299 resultados para chemical grafting
Resumo:
The mechanical properties and fracture behavior of silicon nitride (SiNx) thin film fabricated by plasma-enhanced chemical vapor deposition is reported. Plane-strain moduli, prestresses, and fracture strengths of silicon nitride thin film; deposited both oil a bare Si substrate and oil a thermally oxidized Si substrate were extracted using bulge testing combined with a refined load-deflection model of long rectangular membranes. The plane-strain modu i and prestresses of SiNx thin films have little dependence on the substrates, that is, for the bare Si substrate, they are 133 +/- 19 GPa and 178 +/- 22 MPa, respectively, while for the thermally oxidized substrate, they are 140 +/- 26 Gila and 194 +/- 34 MPa, respectively. However, the fracture strength values of SiNx films grown on the two substrates are quite different, i.e., 1.53 +/- 0.33 Gila and 3.08 +/- 0.79 GPa for the bare Si substrate a A the oxidized Si substrate, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over the edge, Surface, and volume of the specimens and fitted with the Weibull distribution function. For SiNx thin film produced oil the bare Si Substrate, the Volume integration gave a significantly better agreement between data and model, implying that the volume flaws re the dominant fracture origin. For SiNx thin film grown on the oxidized Si substrate, the fit quality of surface and edge integration was significantly better than the Volume integration, and the dominant surface and edge flaws could be caused by buffered HF attacking the SiNx layer during SiO2 removal. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
We have investigated the optical properties of AlGaN grown on sapphire. It is found that two main luminescence peaks occur in the cathodoluminescence (CL) spectra of AlGaN films, and their energy separation increases with the increase of Al source flux during the growth. Spatially resolved CL investigations have shown that the line splitting is a result of variation of AlN mole fraction within the layer. The Al composition varies in both lateral and vertical direction. It is suggested that the difference in the surface mobility of Al and Ga atoms, especially, its strong influence on the initial island coalescence process and the formation of island-like regions on the uneven film surface, is responsible for the Al composition inhomogeneity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The defect evolution and its correlation with electrical properties of GaN films grown by metalorganic chemical vapor deposition are investigated. It is found that the dislocation density decreases gradually during the growth process, and the dislocation reduction rate in the island coalescence process is especially rapid. The changes in electron mobility of GaN with the increase of growth time are mainly dependent on the dislocations acting as scattering centers. Furthermore, the variation of carrier concentration in GaN may be related with the point defects and their clusters. The quality of GaN could be improved by suitably increasing the film thickness. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The GaN-rich side of GaNP ternary alloys has been successfully synthesized by light-radiation heating and low-pressure metal-organic chemical vapor deposition. X-ray diffraction (XRD) rocking curves show that the ( 0002) peak of GaNP shifts to a smaller angle with increasing P content. From the GaNP photoluminescence (PL) spectra, the red shifts from the band-edge emission of GaN are determined to be 73, 78 and 100 meV, respectively, in the GaNP alloys with the P contents of 1.5%, 5.5% and 7.5%. No PL peak or XRD peak related to GaP is observed, indicating that phase separation induced by the short-range distribution of GaP-rich regions in the GaNP layer has been effectively suppressed. The phase-separation suppression in the GaNP layer is associated with the high growth rate and the quick cooling rate under the given growth conditions, which can efficiently restrain the accumulation of P atoms in the GaNP layer.
Resumo:
The in situ optical reflectivity measurements are employed to monitor the GaN epilayer growth process above low-temperature AlN buffer layer on c-plane sapphire substrate by metalorganic chemical vapor deposition. It is found that the lateral growth of GaN islands and their coalescence is promoted in the initial growth stage if the AlN buffer layer is treated with a long annealing time and has an optimal thickness: As confirmed by atomic force microscopy observations, the quality of GaN epilayers is closely dependent on the surface morphology of AlN buffer layer, especially the grain size and nuclei density after the annealing treatment. (C) 2004 American Institute of Physics.
Resumo:
Thin aluminum oxide films were deposited by a new and simple physicochemical method called chemical liquid phase deposition (CLD) on semiconductor materials. Aluminum sulfate with crystallized water and sodium bicarbonate were used as precursors for film growth, and the control of the system's pH value played an important role in this experiment. The growth rate is 12 nm/h with the deposition at [Al-2(SO4)(3)]=0.0837 mol.L-1, [NaHCO3]=0.214 mol.L-1, 15 degreesC. Post-growth annealing not only densifies and purifies the films, but results in film crystallization as well. Excellent quality of Al2O3 films in this work is supported by electron dispersion spectroscopy, Fourier transform infrared spectrum, X-ray diffraction spectrum and scanning electron microscopy photograph.
Resumo:
Multilayer InGaN/GaN quantum dots (QDs) were grown on sapphire substrates through a three-dimensional growth mode, which was initiated by a special passivation processing introduced into the normal growth procedure. Surface morphology and photoluminescence properties of QDs with different stacking periods (from one to four) were investigated. The temperature dependences of the PL peak energies were found to show a great difference between two-layer and three-layer QDs. The fast redshift and the reversed sigmoidal temperature dependences of the PL energies for the former were attributed to the thermally activated carrier transfer from small to large dots. However, the increase of both the dot size and the spatial space among dots with the growing stacking periods reduced the carrier escape and retrapping. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A thermo-optic Mach-Zehnder (MZ) variable optical attenuator based on silicon waveguides with a large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. Multimode interferometers were used as power splitters and combiners in the MZ structure. In order to achieve a smooth interface, anisotropic chemical etching of silicon was used to fabricate the waveguides. Isolating grooves were introduced to reduce power consumption and device length. The device has a low power consumption of 210 mW and a response time of 50 mus. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A 2 x 2 thermo-optic (TO) Mach-Zehnder (MZ) switch based on silicon waveguides with large cross section was designed and fabricated on silicon-on-insulator (SOI) wafer. The multi-mode interferometers (MMI) were used as power splitter and combiner in MZ structure. In order to get smooth interface, anisotropy chemical wet-etching of silicon was used to fabricate the waveguides instead of dry-etching. Additional grooves were introduced to reduce power consumption. The device has a low switching power of 235 mW and a switching speed of 60 mus. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.
Resumo:
A two-hot-boat chemical vapor deposition system was modified from a thermal evaporation equipment. This system has the advantage of high vacuum, rapid heating rate and temperature separately controlled boats for the source and samples. These are in favor of synthesizing compound semiconducting nano-materials. By the system, we have synthesized high-quality wurtzite single crystal GaN nanowires and nanotip triangle pyramids via an in-situ doping indium surfactant technique on Si and 3C-SiC epilayer/Si substrates. The products were analyzed by x-ray diffraction, field emission scanning electron microscopy, highresolution transmission electron microscopy, energy- dispersive x-ray spectroscopy, and photoluminescence measurements. The GaN nanotip triangle pyramids, synthesized with this novel method, have potential application in electronic/ photonic devices for field-emission and laser.
Resumo:
A folding nonblocking 4 X 4 optical matrix switch in simplified-tree architecture was designed and fabricated on a silicon-on-insulator wafer. To compress chip size, switch elements (SEs) were connected by total internal reflection mirrors instead of conventional S-bends. For obtaining smooth interfaces, potassium hydroxide (KOH) anisotropic chemical etching of silicon was employed. The device has a compact size of 20 X 3.2 mm(2) and a fast response of 8 +/- 1 mu s. Power consumption of 2 x 2 SE and excess loss per mirror were 145 mW and -1.1 dB, respectively. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.