134 resultados para Speech Enhancement
Resumo:
A voltage-controlled ring oscillator (VCO) based on a full enhancement-mode InAIAs/InGaAs/InP high electron mobility transistor (HEMT) logic is proposed. An enhancement-mode HEMT (E-HEMT) is fabricated, whose threshold is demonstrated to be 10 mV. The model of the E-HEMT is established and used in the SPICE simulation of the VCO. The result proves that the full E-HEMT logic technology can be applied to the VCO. And compared with the HEMT DCFL technology, the complexity of our fabrication process is reduced and the reliability is improved.
Resumo:
The behaviors of lateral propagating modes in the aperture and the oxidized regions are investigated numerically for selectively oxidized vertical-cavity surface-emitting lasers (VCSELs). The results show that the lateral propagating modes in the oxidized region are greatly affected by the oxide layer due to its low index, the modes are divergence for the VCSELs with sufficient thick double oxide layers. So the coupling between the modes in the aperture and oxidized regions is very weak, and we can expect that the lateral spontaneous emission is greatly affected in this case. Ignoring the contribution of the lateral spontaneous emission, we calculate spontaneous emission factor by counting the total number of the guided modes in selectively oxidized VCSELs with double oxide layers. The results agree very well with the reported measurements and are inversely proportional to the lateral index step.
Resumo:
We investigate the annealing behavior of Photoluminescence (PL) from self-assembled InAs quantum dots (QDs) with different thicknesses GaAs cap layers. The diffusion introduced by annealing treatment results in a blue-shift of the QD PL peak, and a decrease in the integrated intensity. The strain present in QDs enhances the diffusion, and the QDs with the cap layers of different thicknesses will experience a strain of different strength. This can lend to a, better understanding of the larger blue-shift of the PL peak of the deeper buried QDs, and the different variance of the full width at half maximum of the luminescence from QDs with the cap layers of different thicknesses.
Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics
Resumo:
We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.
Resumo:
IEECAS SKLLQG
Resumo:
To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.
Resumo:
It was explored by density functional calculations that exchanged La or P species exert great influence on the local Al sites as well as on the adjacent exchanged species. In partially exchanged La- or P/H-ZSM-5 zeolite, some of the Al sites will fall off from the zeolite framework even more easily than in H-form ZSM-5, consistent with our XRF experiments. However, when exchanged by both La and P species, Al at either of the two exchanged sites shows better stability compared to H-from. zeolite. La and P species will interact strongly with each other, as evidenced by the charge donation process and the shortening of P-O-1 bond length. It was just the cooperation of La and P species that enabled RSCC catalysts worked normally under severe conditions. (C) 2004 Elsevier B.V. All rights reserved.