111 resultados para PIN
Resumo:
研制出a-Si:H pin型X射线间接探测线阵,它探测的是X-射线在闪光体(CsI)所激发的荧光,制备出单元面积分别为2.5×2.5mm~2、1.6×1.6mm~2和100×100μm~2的16、25、320单元的线阵.器件的暗电流达到1.0、10~(-12)A/mm~2(-10mV),光灵敏度~0.35μA/μW*600nm).该文报道了X-射线探测阵列的制备及测试结果.
Resumo:
报道了GaAs/AlGaAs非对称耦合双量子阱pin结构在不同温度下的光荧光谱,观察到宽阱与窄阱重空穴激子峰荧光强度随温度上升而较快下降的不同变化关系,结果表明窄阱电子的热发射是导致窄阱光荧光强度随温度上升而较快下降的主要原因。同时观测到宽阱轻 空穴激子峰强度特殊的温度依赖关系,并分析了其物理机制。
Resumo:
A 2 x 2 Mach-Zehnder interferometer electrooptical switch integrated in silicon-on-insulator using multimode interference 3-dB couplers as splitter and combiner has been proposed and fabricated. Free carriers plasma dispersion effect was utilized to realize light modulation in silicon. Switching operation was achieved at an injection current of 358mA and which can be much reduced by optimizing the PIN structure and improving fabrication process. Extinction ratio of 7.7dB and crosstalk of 4.8dB has been observed.
Resumo:
We report some investigations on vertical cavity surface emitting laser (VCSEL) arrays and VCSEL based optoelectronic smart photonic multiple chip modules (MCM), consisting of 1x16 vertical cavity surface emitting laser array and 16-channel lasers driver 0.35 Pin CMOS circuit. The hybrid integrated multiple chip modules based on VCSEL operate at more than 2GHz in -3dB frequency bandwidth.
Resumo:
Comparative electroluminescence (EL) and photoluminescence (PL) measurements were performed on Si/Si0.6Ge0.4 self-assembly quantum dots (QDs) structures. The samples were grown pseudomorphically by molecular beam epitaxy, and PIN diodes for electroluminescence were fabricated. Assisted TEM pictures shows the SiGe self-assembly QDs are platelike. And it showed that the diameters of QDs are in range from 40nm to 140nm with the most in 120nm. Both EL and PL has a wide luminescence peak due to wide distribution of QDs dimensions. At low temperature (T=14K), EL peak has a red shift compared to the corresponding PL peak. Its full-width at half-maximum (FWHM) is about 97meV, a little smaller than that of corresponding PL peak. The reasons of position and FWHM changes of EL peak from QDs have been discussed.
Resumo:
The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.
Resumo:
An indentation simulation of the crystal Ni is carried out by a molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales. Indenter tips with both sphere shape and conical shape with 60 cone angle are used, and simulation samples with different crystal orientations are adopted. Some defects such as dislocations and point defects are observed. It is found that nucleated defects (dislocations, amorphous atoms) are from the local region near the pin tip or the sample surface. The temperature distribution of the local region is analyzed and it can explain our MD simulation results.
Resumo:
The indention simulation of the crystal Ni is carried out by molecular dynamics technique (MD) to study the mechanical behavior at nanometer scales, the indenter tips with sphere shape is used. Some defects such as dislocations, point defects are observed. It is found that defects (dislocations, amorphous) nucleated is from local region near the pin tip or the sample surface. The temperature distribution of local region is analyzed and it can explain our MD simulation result.
Resumo:
<正>在中国科学院近代物理研究所放射性束流装置RIBLL上完成了17Ne+197Au的实验,采用硅条探测器与CsI(Tl)+PIN探测器阵列进行运动学完全测量,研究了17Ne双质子发射的机制。实验选用
Resumo:
空间辐射环境能够引起半导体集成电路发生的总剂量效应、单粒子效应等辐射效应 ,可以被用来进行空间辐射环境监测。在一定条件下 ,基于此原理的探测器具有常规的面垒型探测器以及 PIN型探测器等所不具备的优点。尤其适合航天器舱内带电离子探测和用于航天医学的个人辐射剂量探测。介绍了三种基于半导体器件辐射效应的探测器。
Resumo:
An experiment to study exotic two-proton emission from excited levels of the odd-Z nucleus P-28 was performed at the National Laboratory of Heavy Ion Research-Radioactive Ion Beam Line (HIRFL-RIBLL) facility. The projectile P-28 at the energy of 46.5 MeV/u was bombarding a Au-197 target to populate the excited states via Coulomb excitation. Complete-kinematics measurements were realized by the array of silicon strip detectors and the CsI + PIN telescope. Two-proton events were selected and the relativistic-kinematics reconstruction was carried out. The spectrum of relative momentum and opening angle between two protons was deduced from Monte Carlo simulations. Experimental results show that two-proton emission from P-28 excited states less than 17.0 MeV is mainly two-body sequential emission or three-body simultaneous decay in phase space. The present simulations cannot distinguish these two decay modes. No obvious diproton emission was found.
Resumo:
本文根据反冲质子法中子探头灵敏度标定实验和分层分块模型(LP)理论计算的局限性,提出了一个计算PIN中了探头高灵敏度的方法,即分层分块蒙特卡罗模拟联合模型(LPMC)。文中首先概述了灵敏度标定实验的原理、装置、方法、部分测量结果及其误差。接着分析了分层分块模型的使用范围。最后着重论述了用分层分块蒙特卡罗模拟联合模型计算反冲质子能谱和中子探头灵敏度的方法,并且与分层分块模型计算结果和实验测量结果进行了比较。根据计算过程,用FORTRAN77语言缩写了计算程序LPMC,其计算方法本身的误差不大于1.8%。LPMC计算结果与实验值在相对误差范围内符合,解决了LP理论对高灵敏度计算结果与实验值偏差过大的问题
Resumo:
在信息产业、生物医学等科技领域越来越受关注的今天,新型光电子、光通信科技必将以更快的速度发展。Si基光电子集成采用成熟价廉的微电子加工工艺,将光学器件与多种功能的微电子电路集成,是实现光通信普及发展和光互连的有效途径。Si基光电探测器是Si基光通信系统的关键器件之一。随着近年来Si基Ge材料外延技术的突破性进展,Si基Ge光电探测器因为兼顾了Si基光电子集成和对光通讯波段(1.31和1.55μm)的高效探测,成为了当今研究的一大热点。
半导体光电探测器的性能与其结构密切相关。PIN型光电探测器是最常见的探测器,可以普遍应用于光通讯光互连系统;雪崩光电二极管(APD)因为具有较高的响应度和内部增益,在实现单光子探测方面具备很大的优越性,适用于当今迅猛发展的生物光子学和量子信息学;共振腔增强型的光电探测器(RCE-PD),集波长选择器、高速光信号接收器于一体,而且具备共振增强作用、高饱和功率输出等特点,是局域网、光纤入户和现代波分复用(Wavelength-Division Multiplexing,WDM)系统光通信网络的一种优选方案;波导结构探测器(Waveguide-PD)可以解除探测器的响应带宽和量子效率之间的矛盾,而且其结构特点更易于实现与调制器等光波导器件的集成,是片上光互连的首选探测器。
本论文围绕高性能Si基Ge光电探测器这一研究目标,开展了多种结构的光电探测器的研制,包括PIN型PD的研制及其优化、吸收区与倍增区分离结构(SACM)的Ge-on-Si APD、RCE-PD和Waveguide-PD,主要研究结果如下:
1. 成功研制了PIN型Ge-on-Si光电探测器,器件在-1V外加偏压下暗电流密度为46.6mA/cm2,在1.31μm和1.55μm波长下器件的量子效率分别为40%和17%;然后改进了实验方法,在制作器件之前将Ge-on-Si材料在850℃条件下快速退火1分钟,从而改善材料质量,器件的暗电流密度降低至4mA/cm2,这是目前国际上报道的最好结果之一。
2. 研制出了PIN型Ge-on-SOI光电探测器,在1.31μm和1.55μm波长的量子效率分别为62%和25%。在-3V外加偏压下,器件的3dB带宽为12.6GHz。25μm直径器件,3dB带宽更是达到了13.4GHz。同时,制作了均匀性很好的1×4探测器阵列,单个器件的3dB带宽达13.3GHz。
3. 在国际上首次研究了硅基锗光电探测器的高饱和特性。在-1V和-2V外加偏压下,探测器的1-dB小信号压缩电流分别为22mA和40mA,相应的光功率分别为67.5mW和110.5mW。
4. 成功研制了吸收区和倍增区分离的Si基Ge雪崩光电二极管,器件的穿通电压Vpt约为29V,击穿电压Vbd(暗电流等于100μA时的电压)为39.5V。在击穿电压附近,如39V时,SACM-Ge-on-Si APD的增益为40。
5. 解决了背面ICP深刻蚀工艺难题,成功制备了中心波长在1.55μm,量子效应高达62%的共振腔增强型Si基Ge光电探测器。
提出一种横向波导型结构Ge-on-SOI光电探测器结构,并对该结构探测器进行了理论计算。
Resumo:
Dry sliding tests were performed on as-cast magnesium alloys Mg97Zn1Y2 and AZ91 using a pin-on-disc configuration. Coefficients of friction and wear rates were measured within a load range of 20-380 and 20-240 N at a sliding velocity of 0.785 m/s. X-ray differactometer, scanning electron microscopy, tensile testing machine were used to characterize the microstructures and mechanical properties of Mg97Zn1Y2 alloy and AZ91 alloy. Worn surface morphologies of Mg97Zn1Y2 and AZ91 were examined using scanning electron microscopy.