395 resultados para Oxygen electrode
Resumo:
Separation by implantation of oxygen and nitrogen (SIMON) silicon-on-insulator (SOI) materials were fabricated by sequential oxygen and nitrogen implantation with annealing after each implantation. Analyses of SIMS, XTEM and HRTEM were performed. The results show that superior buried insulating multi-layers were well formed and the possible mechanism is discussed. The remarkable total-dose irradiation tolerance of SIMON materials was confirmed by few shifts of drain leakage current-gate source voltage (I-V) curves of PMOS transistors fabricated on SIMON materials before and after irradiation.
Resumo:
Gd2O3 thin films were deposited on Si (100) substrates at 650degreesC by a magnetron sputtering system under different Ar/O-2 ratios of 6:1, 4:1 and 2:1. The effect of the oxygen concentration on the properties of oxide thin films was investigated by X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy and capacitance-voltage (C-V)measurement. X-ray diffraction shows that the structure of oxide films changed from the monoclinic Gd2O3 phase to cubic Gd2O3 phase when the oxygen concentration increased. According to C-V measurement, the dielectric constant value of the samples deposited at different Ar/O-2 ratios is about 12. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In our work, nitrogen ions were implanted into separation-by-implantation-of-oxygen (SIMOX) wafers to improve the radiation hardness of the SIMOX material. The experiments of secondary ion mass spectroscopy (SIMS) analysis showed that some nitrogen ions were distributed in the buried oxide layers and some others were collected at the Si/SiO2 interface after annealing. The results of electron paramagnetic resonance (EPR) suggested the density of the defects in the nitrided samples changed with different nitrogen ion implantation energies. Semiconductor-insulator-semiconductor (SIS) capacitors were made on the materials, and capacitance-voltage (C-V) measurements were carried out to confirm the results. The super total dose radiation tolerance of the materials was verified by the small increase of the drain leakage current of the metal-oxide-semiconductor field effect transistor with n-channel (NMOSFETs) fabricated on the materials before and after total dose irradiation. The optimum implantation energy was also determined.
Resumo:
C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.
Resumo:
ZnO films prepared at different temperatures and annealed at 900 degrees C in oxygen are studied by photoluminescence (PL) and x-ray photoelection spectroscopy (XPS). It is observed that in the PL of the as-grown films the green luminescence (GL) and the yellow luminescence (YL) are related, and after annealing the GL is restrained and the YL is enhanced. The O 1s XPS results also show the coexistence of oxygen vacancy (Vo) and interstitial oxygen (O-i) before annealing and the quenching of the V-o after annealing. By combining the two results it is deduced that the GL and YL are related to the V-o and O-i defects, respectively.
Resumo:
Defects in ZnO films grown by radio-frequency reactive magnetron sputtering under variable ratios between oxygen and argon gas have been investigated by using the monoenergetic positron beam technique. The dominate intrinsic defects in these ZnO samples are O vacancies (V-O) and Zn interstitials (Zn-i) when the oxygen fraction in the O-2/Ar feed gas does not exceed 70% in the processing chamber. On the other hand, zinc vacancies are preponderant in the ZnO Elms fabricated in richer oxygen environment. The concentration of zinc vacancies increases with the increasing (2) fraction. For the oxygen fraction 85%, the number of zinc vacancies that could trap positrons will be smaller. It is speculated that some unknown defects could shield zinc vacancies. The concentration of zinc vacancies in the ZnO films varies with the oxygen fraction in the growth chamber, which is in agreement with the results of photoluminescence spectra.
Resumo:
Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Electrolyte electroreflectance spectra of the near-surface strained-layer In0.15Ga0.85As/GaAs double single-quantum-well electrode have been studied at different biases in non-aqueous solutions of ferrocene and acetylferrocene. The optical transitions, the Franz-Keldysh oscillations (FKOs) and the quantum confined Stark effects (QCSE) of In0.15Ga0.85As/GaAs quantum well electrodes are analyzed. Electric field strengths at the In0.15Ga0.85As/GaAs interface are calculated in both solutions by a fast Fourier transform analysis of FKOs. A dip is exhibited in the electric field strength versus bias (from 0 to 1.2 V) curve in ferrocene solution. A model concerning the interfacial tunneling transfer of electrons is used to explain the behavior of the electric field. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.
Raman-forbidden mode and oxygen ordering in Bi2Sr2-xLaxCuO6+gamma single crystals annealed in oxygen
Resumo:
A Raman-forbidden phonon mode at about 840 cm(-1) is observed popularly on the surface of pun and La-doped Bi2Sr2-xLaxCuO6+y (0 less than or equal to x less than or equal to 0.8) single crystals annealed in oxygen. A remarkable excitation dependence of this additional line is found. Based on the properties of the structure of the Bi-O layer with excess oxygen atoms and the similarity in the appearance of the Raman-forbidden modes between RBa2Cu3Ox (R = Y, Nd, Gd, Pr) and Bi2Sr2-xLaxCuO6+y systems, we attribute the manifestation of this additional line to the ordering of the interstitial oxygen in the Bi-O layers. Our results provide Raman evidences for confirming that the ordering of the movable oxygen may exist universally in high-temperature superconductors.
Resumo:
A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.
Resumo:
It was determined that oxygen concentration in heavily Sb-doped silicon was about 40% lower than that in the lightly doped Czochralski grown silicon and decreased with increasing content of Sb by means of coincident elastic recoil detection analysis. Through thermodynamic calculation, the oxygen loss by evaporation from the free surface of melt is only due to the formation of SiO, and Sb2O3 evaporation can be neglected. The basic reason for oxygen concentration reduction in heavily Sb-doped CZSi was that oxygen solubility decreased when element Sb with larger radius doped degenerately into silicon crystal. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The quantum-confined Stark effect and the Franz-Keldysh oscillation of a single quantum well (SQW) GaAs/AlxGa1-xAs electrode were studied in non-aqueous hydroquinone + benzoquinone solution with electrolyte electroreflectance spectroscopy. By investigation of the relation of the quantum-confined Stark effect and the Franz-Keldysh oscillation with applied external bias, the interfacial behaviour of an SQW electrode was analysed. (C) 1997 Elsevier Science S.A.