460 resultados para Excited ions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate two-photon excited fluorescence from CdSe quantum dots with a center-emitting wavelength of 655 nm on SiN photonic crystals. We find that two-photon excited fluorescence is enhanced by more than 1 order of magnitude in the vertical direction when a photonic crystal is used compared to the fluorescence spectra in the absence of photonic crystals. The spectrum of two-photon excited fluorescence from quantum dots on SiN photonic crystal is observed to shift to blue compared to that from quantum dots on SiN without photonic crystals. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural and magnetic properties of Cu+ ions-implanted GaN films have been reported. Eighty kilo-electron-volt Cu+ ions were implanted into n-type GaN film at room temperature with fluences ranging from 1 x 10(16) to 8 x 10(16) cm(-2) and subsequently annealed at 800 degrees C for 1 h in N-2 ambient. PIXE was employed to determine the Cu-implanted content. The magnetic property was measured by the Quantum Design MPMS SQUID magnetometer. No secondary phases or clusters were detected within the sensitivity of XRD. Raman spectrum measurement showed that the Cu ions incorporated into the crystal lattice positions of GaN through substitution of Ga atoms. Apparent ferromagnetic hysteresis loops measured at 10 K were presented. The experimental result showed that the ferromagnetic signal strongly increased with Cu-implanted fluence from 1 x 10(16) to 8 x 10(16) cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Er/Bi codoped SiO2 thin films were prepared by sol-gel method and spin-on technology with subsequent annealing process. The bismuth silicate crystal phase appeared at low annealing temperature while vanished as annealing temperature exceeded 1000 degrees C, characterized by X-ray diffraction, and Rutherford backscattering measurements well explained the structure change of the films, which was due to the decrease of bismuth concentration. Fine structures of the Er3+-related 1.54 mu m light emission (line width less than 7 nm) at room temperature was observed by photoluminescence (PL) measurement. The PL intensity at 1.54 gm reached maximum at 800 degrees C and decreased dramatically at 1000 degrees C. The PL dependent annealing temperature was studied and suggested a clear link with bismuth silicate phase. Excitation spectrum measurements further reveal the role of Bi3+ ions for Er3+ ions near infrared light emission. Through sol-gel method and thermal treatment, Bi3+ ions can provide a perfect environment for Er3+ ion light emission by forming Er-Bi-Si-O complex. Furthermore, energy transfer from Bi3+ ions to Er3+ ions is evidenced and found to be a more efficient way for Er3+ ions near infrared emission. This makes the Bi3+ ions doped material a promising application for future erbium-doped waveguide amplifier and infrared LED

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman scattering measurements have been performed in Ga1-xMnxAs crystals prepared by Mn ions implantation, deposition, and post-annealing. The Raman spectrum measured from the implanted surface of the sample shows some weak phonon modes in addition to GaAs-like phonon modes, where the GaAs-like LO and TO phonons are found to be shifted by approximately 4 and 2 cm(-1), respectively, in the lower frequency direction compared to those observed from the unimplanted surface of the sample. The weak vibrational modes observed are assigned to hausmannite Mn3O4 like. The coupled LO-phonon plasmon mode (CLOPM), and defects and As related vibrational modes caused by Mn ions implantation, deposition, and post-annealing are also observed. The compositional dependence of GaAs-like LO phonon frequency is developed for strained and unstrained conditions and then using the observed LOGaAs peak, the Mn composition is evaluated to be 0.034. Furthermore, by analyzing the intensity of CLOPM and unscreened LOGaAs phonon mode, the hole density is evaluated to be 1.84 x 10(18) cm(-3). (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon excited fluorescence from CdSe quantum dots on a two-dimensional SiN photonic crystal surface is investigated by using a femtosecond laser. By using a photonic crystal, a 90-fold enhancement in the two-photon excited fluorescence in the vertical direction is achieved. This is the highest enhancement achieved so far in the two-photon excited fluorescence in the vertical direction. The mechanism of the enhancement for two-photon excited fluorescence from quantum dots on photonic crystals is analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on time-resolved Kerr rotation measurements of spin coherence of electrons in the first excited subband of a high-mobility low-density two-dimensional electron system in a GaAs/Al0.35Ga0.65As heterostructure. While the transverse spin lifetime (T-2(*)) of electrons decreases monotonically with increasing magnetic field, it has a nonmonotonic dependence on the temperature and reaches a peak value of 596 ps at 36 K, indicating the effect of intersubband electron-electron scattering on the electron-spin relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zn2SiO4:Mn2+, Zn2SiO4:Eu3+ and Zn2SiO4:Mn2+ Eu3+ phosphors were prepared by a sol-gel process and their luminescence spectra were investigated. The emission bands from intra-ion transitions of Mn2+ and Eu3+ samples were studied as a function of pressure. The pressure coefficient of Mn2+ emission was found to be -25.3 +/- 0.5 and -28.5 +/- 0.9 meV/GPa for Zn2SiO4:Mn2+ and Zn2SiO4:Mn2+ Eu3+, respectively. The Eu3+ emission shows only weak pressure dependence. The pressure dependences of the Mn2+ and Eu3+ emissions in Zn2SiO4:Mn2+ Eu3+ are slightly different from that in Zn2SiO4:Mn2+ and Zn2SiO4:Eu3+ samples, which can be attributed to the co-doping of Mn2+ and Eu3+ ions. The Mn2+ emission in the two samples, however, exhibits analogous temperature dependence and similar luminescence lifetimes, indicating no energy transfer from Mn2+ to Eu3+ occurs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence of some low-dimensional semiconductor structures has been investigated under pressure. The measured pressure coefficients of In0.55Al0.45 As/Al0.5Ga0.5As quantum dots with average diameter of 26, 52 and 62 nm are 82, 94 and 98 meV/GPa, respectively. It indicates that these quantum dots are type-I dots. On the other hand, the measured pressure coefficient for quantum dots with 7 nm in size is -17meV/GPa, indicating the type-II character. The measured pressure coefficient for Mn emission in ZnS:Mn nanoparticles is -34.6meV/GPa, in agreement with the predication of the crystal field theory. However, the DA emission is nearly independent on pressure, indicating that this emission is related to the surface defects in ZnS host. The measured pressure coefficient of Cu emission in ZnS: Cu nanoparticles is 63.2 meV/GPa. It implies that the acceptor level introduced by Cu ions has some character of shallow level. The measured pressure coefficient of Eu emission in ZnS:Eu nanoparticles is 24.1 mev/GPa, in contrast to the predication of the crystal field theory. It may be due to the strong interaction between the excited state of Eu ions and the conduction band of ZnS host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By integrating a resonant tunneling diode with a 1.2 mu m-thick slightly doped n-type GaAs layer in a three-barrier, two-well resonant tunneling structure, the resonant tunneling of photo-excited holes exhibits a value of peak-to-valley current ratio (PVCR) as high as 36. A vast number of photo-excited holes generated in this 1.2 mu m-thick slightly doped n-type GaAs layer, and the quantization of hole levels in a 23nm-thick quantum well on the outgoing side of hole tunneling out off the resonant tunneling diode which greatly depressed the valley current of the holes, are thought to be responsible for such greatly enhanced PVCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) of Mn-implanted quantum dot (QD) samples after rapid annealing is studied. It is found that the blue shift of the PL peak of the QDs, introduced by the rapid annealing, decreases abnormally as the implantation dose increases. This anomaly is probably related to the migration of Mn atoms to the InAs QDs during annealing, which leads to strain relaxation when Mn atoms enter InAs QDs or to the suppression of the inter-diffusion of In and Ga atoms when Mn atoms surround QDs. Both effects will suppress the blue shift of the QD PL peaks. The temperature dependence of the PL intensity of the heavily implanted QDs confirms the existence of defect traps around the QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved Kerr rotation measurement in the (Ga,Mn)As diluted magnetic semiconductor allows direct observation of the dynamical properties of the spin system of the magnetic ions and the spin-polarized holes. Experimental results show that the magnetic ions can be aligned by the polarized holes, and the time scales of spin alignment and relaxation take place in tens and hundreds of picoseconds, respectively. The Larmor frequency and effective g factor obtained in the Voigt geometry show an unusual temperature dependence in the vicinity of the Curie temperature due to the exchange coupling between the photoexcited holes and magnetic ions. Such a spin coherent precession can be amplified or destructed by two sequential excitation pulses with circularly copolarized or oppositely polarized helicity, respectively. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAsN bulk and GaAsN/GaAs single quantum wells grown by molecular beam epitaxy are studied by selectively excited photoluminescence (PL) measurements. A significant difference is observed in the PL spectra when the excitation energy is set below or above the band gap of GaAs for the GaAsN/GaAs quantum well samples, while the spectral features of GaAsN bulk are not sensitive to the excitation energy. The observed difference in PL of the GaAsN/GaAs quantum well samples is attributed to the exciton localization effect at the GaAsN/GaAs interfaces, which is directly correlated with the transfer and trap processes of the photogenerated carriers from GaAs into GaAsN through the heterointerfaces. This interface-related exciton localization effect can be greatly reduced by a rapid thermal annealing process, making the PL be dominated by the intrinsic delocalized transition in GaAsN/GaAs. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a nonadiabatic scheme for geometric quantum computation with trapped ions. By making use of the Aharonov-Anandan phase, the proposed scheme not only preserves the globally geometric nature in quantum computation, but also provides the advantage of nonadiabaticity that overcomes the problem of slow evolution in the existing adiabatic schemes. Moreover, the present scheme requires only two atomic levels in each ion, making it an appealing candidate for quantum computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAsSb/GaAs single quantum wells grown by molecular-beam epitaxy are studied by selectively excited photoluminescence measurements. We have simultaneously observed the photoluminescence (PL) from both type-I and type-II transitions in the samples. The two transitions exhibit different PL behavior under different excitation energies. As expected, the peak energy of the type-I emission remains constant in the entire excitation energy range we used, while the type-II transition shows a significant blueshift with increasing excitation energy. The observed blueshift can be well explained by an electron-hole charge separation model at interface. This result, along with the excitation-power-dependent PL and the measured longer carrier decay time, provides more direct information on the type-II nature of the band alignment in GaAsSb/GaAs quantum well structures. (C) 2002 American Institute of Physics.