150 resultados para Current


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crossover between two regimes has been observed in the vertical electric transport of weakly coupled GaAs/AlAs superlattices (SLs). At fixed d.c. bias, the SLs can be triggered by illumination to switch from a regime of temporal current oscillation to the formation of a stable electric field domain. The conversion can be reversed by raising the sample temperature to about 200 K. An effective carrier injection model is proposed to explain the conversion processes, taking into account the contact resistance originating from DX centres in the n(+)-Al0.5Ga0.5As contact layers which is sensitive to light illumination and temperature. In addition, quasiperiodic oscillations have been observed at a particular d.c. bias voltage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model is proposed to understand backgating in GaAs metal-semiconductor field-effect transistors (MESFETs), in which the effect of channel-substrate (CS) junction is included. We have found that the limitation of CS junction to leakage current will cause backgate voltage to apply directly to CS junction and result in a threshold behavior in backgating effect. A new and valuable expression for the threshold voltage has been obtained. The corresponding threshold electric field is estimated to be in the range of 1000-4000 V/cm and for the first time is in good agreement with reported experimental data. More, the eliminated backgating effect in MESFETs that are fabricated on the GaAs epitaxial layer grown at low temperature is well explained by our theory. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dot gain spectra based on harmonic oscillator model are calculated including and excluding excitons. The effects of non-equilibrium distributions are considered at low temperatures. The variations of threshold current density in a wide temperature range are analyzed and the negative characteristic temperature and oscillatory characteristic temperature appearing in that temperature range are discussed. Also,the improvement of quantum dot lasers' performance is investigated through vertical stacking and p-type doping and the optimal dot density, which corresponds to minimal threshold current density,is calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed DAC consists of a unit current-cell matrix for 8MSBs and a binary-weighted array for 4LSBs, trading-off between the precision, speed, and size of the chip. In order to ensure the linearity of the DAC, a double Centro symmetric current matrix is designed by the Q2 random walk strategy. To achieve better dynamic performance, a latch is added in front of the current switch to change the input signal, such as its optimal cross-point and voltage level. For a 12bit resolution,the converter reaches an update rate of 300MHz.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polarization of vertical-cavity surface-emitting laser (VCSEL) can be controlled by electro-optic birefringence. We calculated the birefringence resulted from external electric field which was imposed on the top DBR of VCSEL by assuming that the two polarization modes were in the same place of the gain spectra in the absence of electric field beginning. By modifying SFM, the affection of the electric field strength on the polarization switching currents between the two polarization modes had been shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native Oxide AlAs layer were employed to block the current injection from the tup anode. The luminous intensity exceeded 75 mcd of the LED chip with native oxide AlAs layer sandwiched 5 mu m AlGaAs current spreading layer under 20 mA current injection. Electrical and optical properties the LED chip and plastically sealed lamp were measured. Aging of the LED chip and lamp were performed under 70 degrees C and room temperature, Experiment results shown that there is no apparent effect of the native oxided AlAs layer and the process on the reliability of the LED devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric dark current and photocurrent versus voltage characteristic in the Double Barrier Quantum Wells (DBQWs) photovoltaic infrared photodetector has been studied. A model based on asymmetric potential barriers was proposed. The asymmetric potential thick barrier, which due to the Si dopant segregation during growth makes a major contribution to the asymmetrical I-V characteristic, calculations based on our model agree well with experimental results. This work also confirms the potential use of this DBQWs for infrared photodetector with large responsivity and little dark current under negative bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Double-crystal X-ray diffraction and I-V characterization have been carried out on the GSMBE grown SiGe/Si p-n heterojunction materials. Results show that the SiGe alloys crystalline quality and the misfit dislocations are critical influences on the reverse leakage current. The crystal perfection and/or the degree of metastability of the Sice alloys have been estimated in terms of the model proposed by Tsao with the experimental results. High-quality p-n heterojunction diodes can be obtained by optimizing the SiGe alloy structures, which limit the alloys in the metastable states. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dark current characteristics and temperature dependence for quantum dot infrared photodetectors have been investigated by comparing the dark current activation energies between two samples with identical structure of the dots-in-well in nanoscale but different microscale n-i-n environments. A sequential coupling transport mechanism for the dark current between the nanoscale and the microscale processes is proposed. The dark current is determined by the additive mode of two activation energies: E-a,E-micro from the built-in potential in the microscale and E-a,E-nano related to the thermally assisted tunneling in nanoscale. The activation energies E-a,E-micro and E-a,E-nano decrease exponentially and linearly with increasing applied electric field, respectively.