181 resultados para C-TYPE LECTIN
Resumo:
P-doped ZnO films were deposited on n-Si substrate by radio-frequency magnetron sputtering. Hall measurements revealed that the films annealed in situ at 750 degrees C in an oxygen ambient at a pressure of 1.3x10(-3)-3.9x10(-3) Pa showed p-type behavior with a hole concentration of 2.7x10(16)-2.2x10(17) cm(-3), a mobility of 4-13 cm(2)/V s, and a resistivity of 10.4-19.3 Omega cm. Films annealed at 750 degrees C in a vacuum or in oxygen ambient at higher pressures (5.2x10(-3) and 6.5x10(-3) Pa) showed n-type behavior. Additionally, the p-ZnO/n-Si heterojunction showed a diodelike I-V characteristic. Our results indicate that P-doped p-type ZnO films can be obtained by annealing in oxygen ambient at very low pressures. (c) 2006 American Institute of Physics.
Resumo:
Photoreflectance (PR) has been used to study surface electronic properties (electric field, Fermi level pinning, and density of surface states) of undoped-n(+) (UN+) GaAs treated in the solution of ammonium sulfide in isopropanol. Complex Fourier transformation (CFT) of PR spectra from passivated surface shows that the sulfur overlay on GaAs surface makes no contribution to Franz-Keldysh oscillations (FKOs). The barrier height measured by PR is derived from surface states directly, rather than the total barrier height, which includes the potentials derived from Ga-S and As-S dipole layers. Comparing with native oxidated surface, the passivation leads to 80 meV movement of surface Fermi level towards the conduction band minimum, and reduction by more than one order in density of surface states. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogenated nanocrystalline silicon (nc-Si:H) layers of boron-doped increasing step by step was deposited on n-type crystalline silicon substrate using Plasma Enhanced Chemical Vapor Deposition (PECVD) system. After evaporating Ohm contact electrode on the side of substrate and on the side of nc-Si:H film, a structure of electrode/ (p)nc-Si:H/(n)c-Si/electrode was obtained. It is confirmed by electrical measurement such as I-V curve, C-V curve and DLTS that this is a variable capacitance diode. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Self-assembled InAs quantum dots (QDs) have been fabricated by depositing 1.6, 1.8, 2.0 and 2.5 monolayer (ML) InAs on surfaces of the undoped-n(+) (UN+) type GaAs structure. Room temperature contactless electroreflectance (CER) was employed to study the built-in electric field and the surface Fermi level pinning of these QD-covered UN+ GaAs samples. The CER results show that 1.6 ML InAs QDs on GaAs do not modify the Fermi level, whereas for samples with more than 1.6 ML InAs coverage, the surface Fermi level is moved to the valence band maximum of GaAs by about 70 meV (which is independent of the InAs deposition thickness) compared to bare GaAs. It is concluded that the modification of InAs coverage on the Fermi level on the GaAs surface is due to the QDs, rather than to the wetting layer. (C) 2003 American Institute of Physics.
Resumo:
A thermo-optic variable optical attenuator based on a multimode interference coupler principle is fabricated. The propagation loss of the fabricated device is 1.6 to 3.8 dB at the wavelength range 1510 to 1610 nm, which is very near the calculated value (1.2 dB) by the finite difference beam propagation method. The maximum power consumption is 363 mW and the dynamic attenuation range is 0 to 26 dB. The response frequency of the fabricated attenuator is about 10 kHz. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Phosphor-doped nano-crystalline silicon ((n))nc-Si:H) films are successfully grown on the p-type (100) oriented crystal silicon ((p) c-Si) substrate by conventional plasma-enhanced chemical vapor deposition method. The films are obtained using high H-2 diluted SiH4 as a reaction gas source and using PH3 as the doping gas source of phosphor atoms. Futhermore, the heterojunction diodes are also fabricated by using (n)nc-Si:H films and (p)c-Si substrate. I-V properties are investigated in the temperature range of 230-420K. The experimental results domenstrate that (n)nc-Si:H/(p) c-Si heterojunction is a typical abrupt heterojunction having good rectifing and temperature properties. Carrier transport mechanisms are tunneling - recombination model at forward bias voltages. In the range of low bias voltages ( V-F< 0.8 V), the current is determined by recombination at the (n)nc-Si:H side of the space charge region, while the current becomes tunneing at higher bias voltages( V-F>1.0 V). The present heterojunction has high reverse breakdown voltage ( > - 75 V) and low reverse current (approximate to nA).
Resumo:
Al-related DX-like centers were observed in n-type Al-doped ZnS1-xTex epilayers grown by molecular-beam epitaxy on GaAs substrates. The capacitance-voltage measurement, deep-level transient spectroscopy, and photoconductivity spectroscopy revealed that the behaviors of Al donors in ZnS1-xTex were similar to the so-called DX centers in AlxGa1-xAs. The optical ionization energies (E-i) and emission barriers (E-e) for the observed two Al-related DX-like centers were determined as E-i similar to 1.0 and 2.0cV and E-e similar to 0.21 and 0.39 eV, respectively. It was also shown that the formation of Al-related DX-like centers resulted in a significantly large lattice relaxation in ZnS1-xTex. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Self-organized In0.55Al0.45As/Al0.50Ga0.50As quantum dots are grown by the Stranski-Krastanow growth mode using molecular beam epitaxy on the GaAs(311)A substrate. The optical properties of type-II InAlAs/AlGaAs quantum dots have been demonstrated by the excitation power and temperature dependence of photoluminescence spectra. A simple model accounting for the size-dependent band gap of quantum dots is given to qualitatively understand the formation of type-II In0.55Al0.45As/Al0.50Ga0.50As quantum dots driven by the quantum-confinement-induced Gamma --> X transition. The results provide new insights into the band structure of InAlAs/AlGaAs quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)00725-7].
Resumo:
We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].
Resumo:
Quantum-confined Stark shifts in SiGe/Si type-I multiple quantum wells are suggested by the bias dependence of the photocurrent spectra of p-i-n photodiodes. Both Stark redshift and blueshift have been observed for the same sample in the different ranges of electric fields applied to the quantum wells. The turnaround point corresponds to a certain electric field (named "critical" field). This phenomenon was generally predicted by Austin in 1985 [Phys. Rev. B 31, 5569 (1985)] and calculated in detail for SiGe quantum structure by Kim recently [Thin Solid Films 321, 215 (1998)]. The critical electric field obtained from the photocurrent spectra is in reasonable agreement with the theoretical prediction. (C) 2000 American Institute of Physics. [S0021-8979(00)03711-7].
Resumo:
We investigate the electronic structures of the inhomogeneous quantum dots within the framework of the effective mass theory. The results show that the energies of electron and hole states depend sensitively on the relative magnitude 77 of the core radius to the capped quantum dot radius. The spatial distribution of the electrons and holes vary significantly when the ratio eta changes. A quantum-confinement-driven type-II-type-I transition is found in GaAs/AlxGa1-xAs-capped quantum dot structures. The phase diagram is obtained for different capped quantum dot radii. The ground-state exciton binding energy shows a highly nonlinear dependence on the innner structures of inhomogeneous quantum dots, which originates from the redistribution of the electron and hole wave functions.
Resumo:
Proton-implanted and annealed p-type Si wafers were investigated by using both transmission electron microscopy and spreading resistivity probe. The novel pn junction [Li et al., Mat. Res. Sec. Symp, Proc. 396 (1996) 745], as obtained by using n-type Si subjected to the process as this work, was not observed in the p-type Si wafers in this work. A drop of superficial resistivity in the sample was found and is explained by the proposed models interpreting the novel pn junction. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The concentration of hydroen-indium vacancy complex VInH4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The VInH4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to similar to 10(16) cm(-3) in as-grown liquid encapsulated Czochralski InP. The concentration of the VInH4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. (C) 1998 American Institute of Physics, [S0003-6951(98)04435-0].
Resumo:
Photoluminescence measurements were performed on p-type co-doping effects of C, As, and Mg in GaN. The dopants were incorporated into GaN by ion implantation performed at 77 K. We find that the 3.42 eV luminescence line is sensitive to hole concentration, and propose that after cartful calibration the 3.42 eV line may be used as a probe to measure hole concentration in GaN. Simply doping one kind of accepters will not result in holes, while co-doping can substantially improve p-type doping efficiency. As + C and As + Mg co-doping induce an acceptor level of 180 meV above the valence band. Mg + C co-doping is the most promising method for p-type doping, the related acceptor level is determined to be as shallow as 130 meV. The improvement of the doping efficiency by co-doping is probably due to the decrease of the acceptor ionization energy. (C) 1999 Elsevier Science B.V. All rights reserved.