130 resultados para Amniotic liquid.
Resumo:
A liquid chromatography electrospray mass spectrometry (LC/ESI/MS) method working in multiple reactions monitoring mode for the determination of trace amounts of microcystin variants (MC-LR and [Dha(7)] MC-LR) in waters was developed. The limit of quantification was 0.05 mu g/L and the limit of detection was 0.015 mu g/L for MC-LR and [Dha(7)] MC-LR, respectively. Recoveries for MCs were in the range of 68%-81%. MC-LR and [Dha(7)] MC-LR were chemically stable with similar physiochemical behavior.
Resumo:
Microcystins (MCs) comprise a family of more than 80 related cyclic hepatotoxic heptapeptides. Oxidation of MCs causes cleavage of the chemically unique C-20 beta-amino acid (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid (Adda) amino to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB), which has been exploited to enable analysis of the entire family. In the present study, the reaction conditions (e.g. concentration of the reactants. temperature and pH) used in the production of MMPB by oxidation of cyanobacterial samples with permanganate-periodate were optimized through a series of well-controlled batch experiments. The oxidation product (MMPB) was then directly analyzed by high-performance liquid chromatography with diode array detection. The results of this study provided insight into the influence of reaction conditions on the yield of MMPB. Specifically, the optimal conditions, including a high dose of permanganate (>= 50 mM) in saturated periodate solution at ambient temperature under alkaline conditions (pH similar to 9) over 1-4 h were proposed, as indicated by a MMPB yield of greater than 85%. The technique developed here was applied to determine the total concentration of MCs in cyanobacterial bloom samples, and indicated that the MMPB technique was a highly sensitive and accurate method of quantifying total MCs. Additionally, these results will aid in development of a highly effective analytical method for detection of MMPB as an oxidation product for evaluation of total MCs in a wide range of environmental sample matrices, including natural waters, soils (sediments) and animal tissues. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A sensitive and selective liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous quantitative determination of microcystin-LR (MC-LR) and its glutathione conjugate (MC-LR-GSH) in fish tissues. The analytes were extracted from fish liver and kidney using 0.01 M EDTA-Na-2-5% acetic acid, followed by a solid-phase extraction (SPE) on Oasis HLB and silica cartridges. High-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MC-LR and its glutathione conjugate in fish liver and kidney. Recoveries of analytes were assessed at three concentrations (0.2, 1.0, and 5 mu g g(-1) dry weight [DW]) and ranged from 91 to 103% for MC-LR, and from 65.0 to 75.7% for MC-LR-GSH. The assay was linear within the range from 0.02 to 5.0 mu g g(-1) DW, with a limit of quantification (LOQ) of 0.02 mu g g(-1) DW. The limit of detection (LOD) of the method was 0.007 mu g g(-1) DW in both fish liver and kidney. The overall precision was determined on three different days. The values for within- and between-day precision in liver and kidney were within 15%. This method was applied to the identification and quantification of MC-LR and its glutathione conjugate in liver and kidney of fish with acute exposure of MC-LR. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A method was presented for the determination of testosterone, methyltestosterone and progesterone in liquid cosmetics by coupling polymer monolith microextraction (PMME) to high performance liquid chromatography with UV detection. A poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column was selected as the extraction medium, which showed high extraction capacity towards these compounds. To achieve optimum extraction performance, several parameters relating to PMME were investigated, including extraction flow rate and pH value, inorganic salt and organic phase concentration of the sample matrix. By simple dilution with phosphate solution and filtering, the sample solution then could be directly injected into the device for extraction. The limits of detection of testosterone, methyltestosterone and progesterone were calculated to be 2, 3, 2, 8 and 4.6 mu g/L. Good linearity was achieved in the range of 10 to 1000 mu g/L with a linear coefficient. r value above 0. 996. Excellent method reproducibility was found by intra- and inter-day precisions, yielding the relative standard deviations of < 7. 7 % and < 7. 5 %, respectively. Recovery for them in the real samples was between 83% and 119%.
Resumo:
A simple, rapid and sensitive on-line method for simultaneous determination of four endocrine disruptors (17 beta-estradiol, estriol, bisphenol A and 17 alpha-ethinylestradiol) in environmental waters was developed by coupling in-tube solid-phase microextraction (SPME) to high-performance liquid chromatography (HPLC) with fluorescence detection (FLD). A poly(acrylamide-vinylpyridine-NAP-methylene bisacrylamide) monolith, synthesized inside a polyether ether ketone (PEEK) tube, was selected as the extraction medium. To achieve optimum extraction performance, several parameters were investigated, including extraction flow-rate, extraction time, and pH value, inorganic salt and organic solvent content of the sample matrix. By simply filtered with nylon membrane filter and adjusting the pH of samples to 6.0 with phosphoric acid, the sample solution then could be directly injected into the device for extraction. Low detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method were achieved in the range of 0.006-0.10 ng/mL and 0.02-0.35 ng/mL from spiked lake waters, respectively. The calibration curves of four endocrine disruptors showed good linearity ranging from quantification limits to 50 ng/mL with a linear coefficient R-2 value above 0.9913. Good method reproducibility was also found by intra- and inter-day precisions, yielding the RSDs less than 12 and 9.8%, respectively. Finally, the proposed method was successfully applied to the determination of these compounds in several environmental waters. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The ratio of methanol., water and trifluoroacetic acid ( TFA) was regulated to change the polarity and the pH of the rinse solution and the eluent, so as to improve the high performance liquid chromatography HPLC) detection method for trace microcystines (MCs) in natural water bodies. The results showed that 40 % similar to 45 % methanol-water solution containing 0. 1 % TFA could get good effects on the rinse of impurity, and 70% methanol-water solution containing 0. 1% TFA could elute all the MCs in solid phase extraction ( SPE) cartridge ( C-18), In this way. it is suggested that, in analysis of environmental samples with high concentration of impurity, impurity should be washed with 40% similar to 45% methanol-water solution containing 0. 1% TFA, and MCs should be eluted with 70% similar to 100% methanol-water solution containing 0. 1% TFA.
Resumo:
This paper presents a method for trace level analysis of microcystins in water using solid-phase extraction and high performance liquid chromatography. The optimized condition enabled the determination of common microcystins at levels as low as 0.02 similar to 0.05 mug/L, and the liner range is from 0.1 mug/L to 50 mug/L. The method has been applied to the analysis of field sample from Dianchi lake.
Resumo:
The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]
Resumo:
We report on the study of a single-photon-emitting diode at 77 K. The device is composed of InAs/GaAs quantum dots embedded in the i-region of a p-i-n diode structure. The high signal to noise ratio of the electroluminescence, as well as the small second order correlation function at zero-delay g((2))(0), implies that the device has a low multiphoton emission probability. By comparing the device performances under different excitation conditions, we have, in detail, discussed the basic parameters, such as signal to noise ratio and g((2))(0), and provided some useful information for the future application. (c) 2008 American Institute of Physics.
Resumo:
We report on the single photon emission from single InAs/GaAs self-assembled Stranski-Krastanow quantum dots up to 80K under pulsed and continuous wave excitations. At temperature 80 K, the second-order correlation function at zero time delay, g((2))(0), is measured to be 0.422 for pulsed excitation. At the same temperature under continuous wave excitation, the photon antibunching effect is observed. Thus, our experimental results demonstrate a promising potential application of self-assembled InAs/GaAs quantum dots in single photon emission at liquid nitrogen temperature.
Resumo:
电子邮箱fyan@suda.edu.cn
Resumo:
The transient optical nonlinearity of a nematic liquid crystal doped with azo-dye DR19 is examined. The optical reorientation threshold of a 25-mu m-thick planar-aligned sample of 5CB using a 50 ns pulse duration 532 nm YAG laser pulse is observed to decrease from 800 mJ/mm(2) to 0.6 mJ/mm(2) after the addition of 1 vol% azo dopant, a reduction of three orders of magnitude. When using a laser pulse duration of 10 ns, no such effect is observed. Experimental results indicate that the azo dopant molecules undergo photoisomerization from trans-isomer to cis-isomer under exposure to light, and this conformation change reorients the 5CB molecules via intermolecular coupling between guest and host. This guest-host coupling also affects the azo photoisomerization process.
Resumo:
Proton-conducting membranes were prepared by polymerization of microemulsions consisting of surfactant-stabilized protic ionic liquid (PIL) nanodomains dispersed in a polymerizable oil, a mixture of styrene and acrylonitrile. The obtained PIL-based polymer composite membranes are transparent and flexible even though the resulting vinyl polymers are immiscible with PIL cores. This type of composite membranes have quite a good thermal stability, chemical stability, tunability, and good mechanical properties. Under nonhumidifying conditions, PIL-based membranes show a conductivity up to the order of 1 x 10(-1) S/cm at 160 degrees C, due to the well-connected PIL nanochannels preserved in the membrane. This type of polymer conducting membranes have potential application in high-temperature polymer electrolyte membrane fuel cells.
Resumo:
Self-organized Al0.3Ga0.7As islands generated on the (100) facet are achieved by liquid phase epitaxy. Three particularly designed experimental conditions-partial oxidation, deficient solute and air quenching-result in defect-free nucleation. Micron-sized frustums and pyramids are observed by a scanning electron microscope. The sharp end of the tip has a radius of curvature less than 50 nm. It is proposed that such Al0.3Ga0.7As islands may be potentially serviceable in microscale and nanoscale fabrication and related spheres. (C) 2004 Elsevier B.V. All rights reserved.