159 resultados para Ammonia - Volatilization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-quality GaN epilayers have been grown by gas source molecular beam epitaxy using ammonia as the nitrogen source. During the growth, the growth rate is up to 1.2 mu m/h and can be varied from 0.3 to 1.2 mu m. The unintentional n-type doping as low as 7x10(17) cm(-3) was obtained at room temperature. Low-temperature photoluminescence spectrum was dominated by near-edge emission without deep-level related luminescence, indicative of high-quality epilayers. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaN epilayers on sapphire (0001) substrates were grown by the gas source molecular beam epitaxy (GSMBE) method using ammonia (NH,) gas as the nitrogen source. Properties of gallium nitride (GaN) epilayers grown under various growth conditions were investigated. The growth rate is up to 0.6 mu m/h in our experiments. Cathodoluminescence, photoluminescence and Hall measurements were used to characterize the films. It was shown that the growth parameters have a significant influence on the GaN properties. The yellow luminescence was enhanced at higher growth temperature. And a blue emission which maybe related to defects or impurity was observed. Although the emission at 3.31 eV can be suppressed by a low-temperature buffer layer, a high-quality GaN epilayer can be obtained without the buffer layer. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

GaN nanorods with vertebra-like morphology were synthesized by nitriding Ga2O3/ZnO films at 1000 degrees C for 20min. Ga2O3 thin films and ZnO middle layers were pre-deposited in turn on Si(111) substrates by r.f. magnetron sputtering system. In the flowing ammonia ambient, ZnO was reducted to Zn and Zu sublimated at 1000 degrees C. Ga2O3 was reducted to Ga2O and Ga2O reacted with NH3 to synthesize GaN nanorods in the help of the sublimation of Zn. The structure and morphology of the nanorods were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), The composition of GaN nanorods was studied by energy dispersive spectroscopy (EDS) and fourier transform infrared (FTIR) system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

生物质煤气废水是一种新出现的高浓度氨氮有机废水。作者采用化学沉淀法去除该废水中的氨氮,研究了不同沉淀剂、pH、温度和搅拌时间对氨氮去除效果的影响。结果表明,MgCl2+Na3PO4·12H2O明显优于其他沉淀剂组合。当n(Mg^2+):n(NH4^+):n(PO4^3-)=1:1:1、pH10.0、温度30℃、搅拌时间30min时,废水中的氨氮质量浓度从处理前的222mg/L降到17mg/L,去除率为92.3%。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800 degrees C and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In-fibre chemical and optical sensors based on silver nanocrystals modified microstructured polymer optical fibres (MPOFs) were demonstrated. The silver nanocrystals modified MPOFs were formed by direct chemical reduction of silver ammonia complex ions on the templates of array holes in the microstructure polymer optical fibres. The nanotube-like and nanoisland-like Ag-modified MPOFs could be obtained by adjusting the conditions of Ag-formation in the air holes of MPOFs. SEM images showed that the higher concentration of the reaction solution (silver ammonia 0.5 mol/L, glucose 0.25 mol/L), gave rise to a tubular silver layer in MPOF, while the lower concentration (silver ammonia 0.1 M, glucose 0.05 M) produced an island-like Ag nanocrystal modified MPOF. The tubular Ag-MPOF composite fibre was conductive and could be directly used as array electrodes in electrochemical analyses. It displayed high electrochemical activity on sensing nitrate or nitrite ions. The enhanced fluorescence of dye molecules was observed when the island-like Ag-modified MPOF was inserted into a fluorescent dye solution. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Undoped and Zinc-doped GaN films have been grown using TMGa, DEZn and Ammonia by MOVPE. The GaN blue-green LEDs of m-i-n structure have been fabricated. They can be operated at forward bias less than 5 volts. The EL peak wavelengths was from 455 nm to 504 nm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

50mm SiC films with high electrical uniformity are grown on Si(111) by a newly developed vertical low-pressure chemical vapor deposition (LPCVD) reactor.Both in-situ n- and p-type doping of 3C-SiC are achieved by intentional introduction of ammonia and boron into the precursor gases.The dependence of growth rate and surface morphology on the C/Si ratio and optimized growth conditions is obtained.The best electrical uniformity of 50mm 3C-SiC films obtained by non-contact sheet resistance measurement is ±2.58%.GaN films are grown atop the as-grown 3C-SiC/Si(111) layers using molecular beam epitaxy (MBE).The data of both X-ray diffraction and low temperature photoluminescence of GaN/3C-SiC/Si(111) show that 3C-SiC is an appropriate substrate or buffer layer for the growth of Ⅲ-nitrides on Si substrates with no cracks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文对沈阳市郊大民屯镇不同年限蔬菜温室土壤化学性质进行研究与分析。得到主要结论如下: 蔬菜温室0~20 cm表层土壤有机质、全氮、速效磷、速效钾、铵态氮、硝态氮均处于较高的养分水平,并且随温室使用年限的延长,呈增加的趋势。土壤有酸化的趋势,土壤电导率呈升高态势。土壤有效态Fe、Mn、Cu、Zn含量分别为8.57~60.30 mg kg-1、2.69~22.43 mg kg-1、0.64~7.52 mg kg-1和0.56~9.29 mg kg-1,变异系数为50%左右;随着温室使用年限的增加,土壤有效态Fe、Mn、Cu、Zn含量总体上呈增加的趋势。土壤Ni、Cd的有效含量随种植年限的延长趋于增加,有效Pb呈现出下降的趋势,土壤重金属Cr的有效态含量与种植年限之间没有明显的相关性。 不同年限蔬菜温室土壤剖面有机质、全氮、速效磷及速效钾含量高于相邻的露地菜田土壤,并随种植年限的延长而增加,随土层深度的增加而下降。温室土壤中铵态氮的含量随温室种植年限的变化相对较小,在土壤剖面不同层次中变化也没有明显的规律性。与露地菜田土壤相比,温室土壤中有效态铁、锰含量下降,有效态铜、锌、铅、镍含量增加。0~30 cm土层土壤交换性Ca呈下降的趋势,交换性Mg呈上升的趋势,土壤Ca/Mg比值呈下降的趋势。

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modeling study is conducted to investigate the effect of hydrogen content in propellants on the plasma flow, heat transfer and energy conversion characteristics of low-power (kW class) arc-heated hydrogen/nitrogen thrusters (arcjets). 1:0 (pure hydrogen), 3:1 (to simulate decomposed ammonia), 2:1 (to simulate decomposed hydrazine) and 0:1 (pure nitrogen) hydrogen/nitrogen mixtures are chosen as the propellants. Both the gas flow region inside the thruster nozzle and the anode-nozzle wall are included in the computational domain in order to better treat the conjugate heat transfer between the gas flow region and the solid wall region. The axial variations of the enthalpy flux, kinetic energy flux, directed kinetic-energy flux, and momentum flux, all normalized to the mass flow rate of the propellant, are used to investigate the energy conversion process inside the thruster nozzle. The modeling results show that the values of the arc voltage, the gas axial-velocity at the thruster exit, and the specific impulse of the arcjet thruster all increase with increasing hydrogen content in the propellant, but the gas temperature at the nitrogen thruster exit is significantly higher than that for other three propellants. The flow, heat transfer, and energy conversion processes taking place in the thruster nozzle have some common features for all the four propellants. The propellant is heated mainly in the near-cathode and constrictor region, accompanied with a rapid increase of the enthalpy flux, and after achieving its maximum value, the enthalpy flux decreases appreciably due to the conversion of gas internal energy into its kinetic energy in the divergent segment of the thruster nozzle. The kinetic energy flux, directed kinetic energy flux and momentum flux also increase at first due to the arc heating and the thermodynamic expansion, assume their maximum inside the nozzle and then decrease gradually as the propellant flows toward the thruster exit. It is found that a large energy loss (31-52%) occurs in the thruster nozzle due to the heat transfer to the nozzle wall and too long nozzle is not necessary. Modeling results for the NASA 1-kW class arcjet thruster with hydrogen or decomposed hydrazine as the propellant are found to compare favorably with available experimental data.