194 resultados para Acceptor moieties


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown on semi-insulating GaAs(100) substrates by MBE using a rf-plasma source for N doping were investigated. The PL peak which can be related to N acceptor was observed in the PL spectra of ZnSe:N smaples. At 10K, as the excitation power density increases, the energy of donor-acceptor pair(DAP) emission shows a blue-shift and its intensity tends to saturate. As the temperature increases over a range from 10K to 300K, the relative PL intensity of donor bound exciton to that of the acceptor bound exciton increases due to the transfer between two bound excitons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoluminescence measurements were performed on p-type co-doping effects of C, As, and Mg in GaN. The dopants were incorporated into GaN by ion implantation performed at 77 K. We find that the 3.42 eV luminescence line is sensitive to hole concentration, and propose that after cartful calibration the 3.42 eV line may be used as a probe to measure hole concentration in GaN. Simply doping one kind of accepters will not result in holes, while co-doping can substantially improve p-type doping efficiency. As + C and As + Mg co-doping induce an acceptor level of 180 meV above the valence band. Mg + C co-doping is the most promising method for p-type doping, the related acceptor level is determined to be as shallow as 130 meV. The improvement of the doping efficiency by co-doping is probably due to the decrease of the acceptor ionization energy. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the photoluminescence (PL) properties of nitrogen-doped ZnSe epilayers grown by molecular beam epitaxy using a nitrogen radio frequency-plasma source. The PL data shows that the relative intensity of the donor-bound exciton (I-2) emission to the acceptor-bound exciton (I-1) emission strongly depends on both the excitation power and the temperature. This result is explained by a thermalization model of the bound exciton which involved in the capture and emission between the neutral donor bound exciton, the neutral acceptor bound exciton and the free exciton. Quantitative analysis with the proposed mechanism is in good agreement with the experimental data. (C) 1999 American Institute of Physics. [S0021-8979(99)09102-1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hexagonal GaN films (similar to 3 mu m) were grown on 3c-SiC/Si(111) and carbonized Si(111) substrates using a thick AlN buffer Cracks are observed on the surface of the GaN film grown on the carbonized Si(111), while no cracks are visible on the 3c-SiC/Si(111). XRD exhibits polycrystalline nature of the GaN film grown on the carbonized Si(111) due to poorer crystalline quality of this substrate. Raman spectra reveal that all GaN layers are under tensile stress, and the GaN layer grown on 3c-SiC/Si(111) shows a very low stress value of sigma(xx) = 0.65 Gpa. In low-temperature Photoluminescence spectra the remarkable donor-acceptor-pair recombination and yellow band can be attributed to the incorporation of Si impurities from the decomposition of SiC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

近年来,随着近红外领域研究的深入,特别是光通讯工业的发展,迫切需要一大批具有良好发光性质的近红外材料。有机材料由于成本低、工艺简单和结构易调控等优点而备受关注。目前,对近红外有机发光材料的研究主要集中在两大类:一是稀土元素配合物;二是有机离子染料。但由于稀土元素的4f-4f跃迁是宇称禁阻的,其分子的激发需通过配体与中心离子的能量转移,发光效率低。同时有机离子染料由于静电相互作用,分子容易因聚集而导致发光萃灭,其器件结构主要采用主客体掺杂技术,存在着较强的主体材料发光和器件发光效率低等缺点。传统有机非离子型材料则不受上述因素的限制,可得到聚集态下高效的发光效率。本论文通过将电子给体与受体共轭连接,设计并合成了系列非离子型的窄带隙有机小分子,研究了它们在近红外电致发光等器件中的应用,主要工作内容和结果如下: (1)在分子内同时引入电子给体和受体,将它们共轭连接,设计并合成了系列D-π-A-π-D型的有机小分子,利用分子内电荷转移,实现近红外区域的吸收和发射。我们选择三苯胺和芴为电子给体,苯并双噻二唑及其衍生物为电子受体,苯、噻吩和吡咯为连接基团,得到的系列化合物的光谱及电化学性质能在很大的范围内进行调节。化合物的吸收光谱可从600nm至1400nm,发射光谱从900nm至1600nm范围内调节。化合物的带宽可从1.19eV减小到0.56eV。由于分子间的强相互作用,化合物在混合溶剂中可自组装成带状结构。同时该系列化合物在隔绝氧气的环境中有良好的光化学稳定性,可应用于电致发光或光伏器件中。 (2)多层器件结构是提高有机电致发光效率的有效方法,但前提是发光材料最好是可真空蒸镀。我们在前部分工作的基础上,合成了系列热稳定的可蒸镀型有机小分子。通过改变受体及给体结构可调节发光波长及效率。利用“掺杂剂/主体材料的思想”制备的电致发光器件,发光波长覆盖700nm到1500nm的范围,最长中心波长为1115nm。发光波长752nm时,器件最高外量子效率为1.12%。基于化合物IV-5制备的非掺杂器件,发光波长为1080nm,外量子效率为0.28%。该效率比基于有机离子染料的器件提高了近10倍。基于化合物IV-7的器件最大发射波长为1220nm,为迄今为止非掺杂有机电致发光器件中的最长发射波长。以上结果证明,该系列分子是良好的近红外电致发光材料。 (3)我们研究了含苯并双噻二唑分子与常见阴离子的相互作用关系,发现其只对CN-离子和F-离子有响应,而对其它阴离子如Cl , Br , I , AcO , H2PO4 , HSO4 , 和NO3 等则没有任何响应。并且通过将其中噻二唑环换成硝基,可实现对CN-离子和F-离子的区分。化合物V-2可高选择性的检测氰离子,其它离子的存在不会干扰检测信号,包括氟离子。检测信号为外观颜色的改变,可作为显色传感器。化合物V-3可定量检测CN-离子,检测极限为1μM。并且检测信号包括近红外发射的萃灭、可见发射的增强和吸收光谱的改变,多重检测信号可增加检测的可靠性。由于响应信号处于近红外区的生物波段,可应用于生物领域

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the passivation of two deep copper-related acceptor levels in Cu-diffused p-type GaAs by the group-I element lithium. The deep-level-transient-spectroscopy (DLTS) signals of the well-known Cu-related levels with apparent activation energies 0.15 eV and 0.40 eV disappear in Cu-diffused samples when they are diffused with Li, but can be reactivated by annealing. Photoluminescence measurements show a corresponding disappearance and reappearance of the copper-related luminescence at 1.36 eV. Also we observe with DLT'S an energy level at E(V) + 0.32 eV in the Cu-Li-diff-used samples. The level is neither present in the Cu-diffused samples before Li diffusion nor in Cu-Li-diffused samples after annealing. As the level is not observed in starting materials or solely Li-diffused samples we suggest that it is related to a Cu-Li complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report lithium passivation of the shallow acceptors Zn and Cd in p-type GaAs which we attribute to the formation of neutral Li-Zn and Li-Cd complexes. Similar to hydrogen, another group-I element, lithium strongly reduces the concentration of free holes when introduced into p-type GaAs. The passivation is inferred from an increase of both the hole mobility and the resisitivity throughout the bulk of the sample. It is observed most clearly for Li concentrations comparable to the shallow-acceptor concentration. In addition, compensation of shallow acceptors by randomly distributed donors is present in varying degree in the Li-diffused samples. Unlike hydrogenation of n-type GaAs, Li doping shows no evidence of neutralizing shallow donors in GaAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The geometrical parameters and electronic structures of C60, (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl, Br, I) have been calculated by the EHMO/ASED (atom superposition and electron delocalization) method. When putting a central atom into the C60 cage, the frontier and subfrontier orbitals of (A partial derivative C60) (A = Li, Na, K, Rb, Cs) and (H partial derivative C60) (H = F, Cl) relative to those of C60 undergo little change and thus, from the viewpoint of charge transfer, A (A = Li, Na, K, Rb, Cs) and H (H = F, Cl) are simply electron donors and acceptors for the C60 cage resPeCtively. Br is an electron acceptor but it does influence the frontier and subfrontier MOs for the C60 cage, and although there is no charge transfer between I and the C60 cage, the frontier and subfrontier MOs for the C60 cage are obviously influenced by I. The stabilities DELTAE(X) (DELTAE(X) = (E(X) + E(C60)) - E(x partial derivative C60)) follow the sequence I < Br < None < Cl < F < Li < Na < K < Rb < Cs while the cage radii r follow the inverse sequence. The stability order and the cage radii order have been explained by means of the (exp-6-1) potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infrared absorption experiments have been performed on hydrogenated and deuterated bulk boron- and aluminum-doped-Si and implanted P, As, and Sb donors in silicon. A first evidence of complex formation in bulk p-type Si is obtained and the spectra confirm the anomalous 3.3-cm-1 deuterium frequency shift with respect to boron isotopes. The ratio of the D-B-11 and D-B-10 peak areas is found to be the same as that of the two boron isotopes natural abundance. In donor-implanted silicon, a quantitative analysis of the obtained data has allowed a rough estimate of the passivating rate due to diffusing deuterium. While the frequencies of the various vibrational lines are found to be in agreement with those reported in the literature, the data on the broad line at 1660 cm-1 (H) or 1220 cm-1 (D) seem to suggest an assignment of this peak to a complex in the bulk involving some type of defect due to the implantation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-energy shift of the band-band recombination has been observed in photoluminescence spectra of the strained InP layer grown on GaAs substrate. The InP layer is under biaxial compressive strain at temperatures below the growth temperature, because the thermal expansion coefficient of InP is smaller than that of GaAs. The strain value determined by the energy shift of the band-edge peak is in good agreement with the calculated thermal strain. A band to carbon acceptor recombination is also identified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cd in GaAs is an acceptor atom and has the largest atomic diameter among the four commonly-used group-II shallow acceptor impurities (Be, Mg, Zn and Cd). The activation energy of Cd (34.7 meV) is also the largest one in the above four impurities, When Cd is doped by ion implantation, the effects of lattice distortion are expected to be apparently different from those samples ion-implanted by acceptor impurities with smaller atomic diameter. In order to compensate the lattice expansion and simultaneously to adjust the crystal stoichiometry, dual incorporation of Cd and nitrogen (N) was carried out into GaAs, Ion implantation of Cd was made at room temperature, using three energies (400 keV, 210 keV, 110 keV) to establish a flat distribution, The spatial profile of N atoms was adjusted so as to match that of Cd ones, The concentration of Cd and N atoms, [Cd] and [N] varied between 1 x 10(16) cm(-3) and 1 x 10(20) cm(-3). Two type of samples, i.e., solely Cd+ ion-implanted and dually (Cd+ + N+) ion-implanted with [Cd] = [N] were prepared, For characterization, Hall effects and photoluminescence (PL) measurements were performed at room temperature and 2 K, respectively. Hall effects measurements revealed that for dually ion-implanted samples, the highest activation efficiency was similar to 40% for [Cd] (= [N])= 1 x 10(18) cm(-3). PL measurements indicated that [g-g] and [g-g](i) (i = 2, 3, alpha, beta,...), the emissions due to the multiple energy levels of acceptor-acceptor pairs are significantly suppressed by the incorporation of N atoms, For [Cd] = [N] greater than or equal to 1 x 10(19) cm(-3), a moderately deep emission denoted by (Cd, N) is formed at around 1.45-1.41 eV. PL measurements using a Ge detector indicated that (Cd, N) is increasingly red-shifted in energy and its intensity is enhanced with increasing [Cd] = [N], (Cd, N) becomes a dominant emission for [Cd] = [N] = 1 x 10(20) cm(-3). The steep reduction of net hole carrier concentration observed for [Cd]/[N] less than or equal to 1 was ascribed to the formation of (Cd, N) which is presumed to be a novel radiative complex center between acceptor and isoelectronic atoms in GaAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neutron-irradiated high-resistivity silicon detectors have been subjected to elevated temperature annealing (ETA). It has been found that both detector full depletion voltage and leakage current exhibit abnormal annealing (or ''reverse annealing'') behaviour for highly irradiated detectors: increase with ETA. Laser induced current measurements indicate a net increase of acceptor type space charges associated with the full depletion voltage increase after ETA. Current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) data show that the dominant effect is the increase of a level at 0.39 eV below the conduction band (E(c) - 0.39 eV) or a level above the valence band (E(v) + 0.39 eV). Candidates tentatively identified for this level are the singly charged double vacancy (V-V-) level at E(c) - 0.39 eV, the carbon interstitial-oxygen interstitial (C-i-O-i) level at E(v) + 0.36 eV, and/or the tri-vacancy-oxygen center (V3O) at E(v) + 0.40 eV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, we reported successful growth of high-quality GaAs/Si epilayers by using a very thin amorphous Si film as buffer layer. In this paper, the impurity properties of this kind of GaAs/Si epilayers have been studied by using PL spectrum, SIMS and Hall measurement. Compared to a typical PL spectrum of the GaAs/Si epilayers grown by conventional two-step method, a new peak was observed in our PL spectrum at the energy of 1.462 eV, which is assigned to the band-to-silicon acceptor recombination. The SIMS analysis indicates that the silicon concentration in this kind of GaAs/Si epilayers is about 10(18) cm(-3). But its carrier concentration (about 4 x 10(17) cm(-3)) is lower than the silicon concentration. The lower carrier concentration in this kind of GaAs/Si epilayer can be interpreted both as the result of higher compensation and as the result of the formation of the donor-defect complex. We also found that the high-quality and low-Si-concentration GaAs/Si epilayers can be regrown by using this kind of GaAs/Si epilayer as substrate. The FWHM of the X-ray (004) rocking curve from this regrowth GaAs epilayer is 118 '', it is much less than that of the first growth GaAs epilayer (160 '') and other reports for the GaAs/Si epilayer grown by using conventional two-step method (similar to 200 '').