145 resultados para rp
Resumo:
We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at root(NN)-N-s = 62.4 and 200 GeV. The photons are measured in the region -3.7 < eta < -2.3 using the photon Multiplicity detector in the STAR experiment at RHIC. The number of photons produced per average number of participating nucleon pairs increases with the beam energy and is independent of (lie collision centrality. For collisions with similar average numbers of participating nucleons the photon multiplicities are observed to be similar for An + Au and Cu + Cu collisions at a given beam energy. The ratios of the number of charged particles to photons in the measured pseudorapidity range are found to be 1.4 +/- 0.1 and 1.2 +/- 0.1 for root(NN)-N-s = 62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of eta-Y-beam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A high performance Time-of-Flight detector has been designed and constructed for isochronous mass spectrometry at the experimental Cooler Storage Ring (CSRe) The detector has been successfully used in an experiment to measure the masses of the N approximate to Z approximate to 33 nuclides near the proton drip-line Of particular interest is the mass of As-65 A maximum detection efficiency of 70% and a time resolution of 118 +/- 8 Ps (FWHM) have been achieved in the experiment The dependence of detection efficiency and signal average pulse height (APH) on atomic number Z has been studied The potential of APH for Z identification has been discussed (C) 2010 Elsevier B V All rights reserved
Resumo:
论文包括两部分内容:利用强子动力学模型和相对论平均场近似方法研究了强子的有效质量;扩展了夸克质量密度相关的模型,讨论了核子的基本性质。 从非线性σ-ω-ρ模型拉氏量出发,给出了核物质标量密度和矢量密度的关系,利用其修正了K介子有效质量;在不变耦合系数和密度相关耦合系数下,研究了Θ+的有效质量,并发现在密度相关的耦合系数下,标量介子与重子的相互作用在高密度区域被削弱。 在改进的夸克质量密度相关(IQMDD)模型的基础上,引入了ω介子来描述夸克间排斥作用,给出了夸克和σ,ω场函数满足的方程, 通过自洽求解,分B^(1/4)=145MeV和c2=0两种情况,研究了在不同条件下夸克波函数和夸克密度的变化情况,给出了σ,ω场函数的分布。计算了rp,磁矩μp,以及核子的轴矢量与矢量的β衰变耦合系数之比gA/gv,发现与实验值有较好的吻合
Resumo:
碳化硅是一种宽带隙半导体材料,具有禁带宽度大、击穿电压高、热导率高、电子饱和漂移速度大、介电常数小、抗辐射能力强、化学稳定性好等优良特性,使其在越来越多的领域如航空航天、太空探测、人造卫星、地热勘探、核能仪器、雷达通讯等, 所需要高温、高速、高频、大功率的微电子器件方面倍受青睐,并和氮化镓、金刚石一起被誉为发展前景十分广阔的第三代半导体材料。本论文采用He+离子注入,在SiC衬底一定深度引入纳米气泡/空腔的方法,来增强对氧原子的俘获以增加O原子在RP处局域浓度,使得更利于O与Si的反应,从而促进氧化埋层的形成,以达到降低注入O的剂量而形成优良的氧化物电绝缘层的目的。由于高剂量的O注入会引起表层SiC材料的损伤,该方法有望缓解目前SIMOX技术中O离子高剂量注入引起表层材料的损伤问题,以期获得低成本、低缺陷密度的SiCOI材料。论文主要开展了如下研究:(1)对He+离子高温(600 K)注入6H-SiC中产生的辐照缺陷,以及缺陷在阶梯温度退火的演化行为的特征进行了分析。实验采用100 keV的He+,辐照剂量范围为3.0×1015~3.0×1016 He+/cm2。利用拉曼光谱、室温光致发光谱、红外吸收光谱、沟道卢瑟福背散射谱的特征进行了分析。实验结果表明,离子注入所产生晶格损伤的程度与He+离子注入剂量有关;高温退火使得损伤得到恢复,不同注入剂量造成的晶格损伤需要不同的退火温度才可恢复。高剂量注入的样品在阶梯温度退火条件下呈现出了点缺陷的复合、氦-空位团的产生、氦泡的形核、长大等特性。与室温注入相比,高温注入引入的自退火作用使大部分简单缺陷发生复合,限制了损伤的积累,从而在材料中产生相对较小的损伤。在一定剂量范围内是避免注入层非晶化的一个重要方法,为后续利用氦离子注入空腔掩埋层吸杂或者制备低成本、低缺陷密度的绝缘层上碳化硅(SiCOI)材料提供了可能。 (2)对He的预注入引入的辐照缺陷与随后注入的氧原子的相互作用机理进行了初步分析。实验采用先He后O注入的方法,采用的离子能量为30 keV (He+),100 keV (O+);剂量分别为3.0×1016 (He+)、1.0×1017 (O+) ions/cm2。拉曼散射谱结果表明,空腔对氧的吸收主要是通过捕获简单缺陷释放出来的间隙氧原子实现的,进而促进了对氧的吸附,形成硅氧化合物,有利于氧化埋层的形成。紫外-可见吸收谱中的干涉带表明在材料表面下大概198 nm处是损伤层与晶体层的分界面,接近于SRIM2006估算得到的30 keV He+和100 keV O+辐照损伤的深度(He+辐照损伤的深度为195 nm;O+辐照损伤的深度为165 nm)。沟道卢瑟福背散射谱表明,在特定深度(约150 nm)处,样品中形成了接近非晶的埋层。He离子预注入的碳化硅基体由于含有较多的空位,注入的氧在退火过程中从简单缺陷中释放,向空腔层扩散并捕获在空腔层内,使得He离子预先注入形成的空腔层限制了随后O离子注入造成的损伤层的厚度
Resumo:
To avoid the limitation of the widely used prediction methods of soil organic carbon partition coefficients (K-OC) from hydrophobic parameters, e.g., the n-octanol/water partition coefficients (K-OW) and the reversed phase high performance liquid chromatographic (RP-HPLC) retention factors, the soil column liquid chromatographic (SCLC) method was developed for K-OC prediction. The real soils were used as the packing materials of RP-HPLC columns, and the correlations between the retention factors of organic compounds on soil columns (k(soil)) and K-OC measured by batch equilibrium method were studied. Good correlations were achieved between k(soil) and K-OC for three types of soils with different properties. All the square of the correlation coefficients (R-2) of the linear regression between log k(soi) and log K-OC were higher than 0.89 with standard deviations of less than 0.21. In addition, the prediction of K-OC from K-OW and the RP-HPLC retention factors on cyanopropyl (CN) stationary phase (k(CN)) was comparatively evaluated for the three types of soils. The results show that the prediction of K-OC from k(CN) and K-OW is only applicable to some specific types of soils. The results obtained in the present study proved that the SCLC method is appropriate for the K-OC prediction for different types of soils, however the applicability of using hydrophobic parameters to predict K-OC largely depends on the properties of soil concerned. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Reversed-phase high performance liquid chromatography (RP-HPLC) was employed to develop predictive models for fish bioconcentration factors (BCF) of organic compounds. Estimation of BCF from RP-HPLC retention parameters on octadecyl-bonded silica gel (ODS), cyanopropyl-bonded silica gel (CN), and phenyl-bonded silica gel (Ph) columns were investigated. The results show that, for a set of compounds belonging to different chemical classes, the CN stationary phase is the best one among the three columns and better than n-octanol/water model for BCF estimation. A multi-column RP-HPLC model, using the retention parameters on the CN and Ph columns as the variables of multiple linear regression equations, was further evaluated to estimate BCF of organic compounds belonging to different chemical classes, and the results show that the multi-column RP-HPLC model is better than that of any single RP-HPLC column for BCF estimation.
New uniform algorithm to predict reversed phase retention values under different gradient conditions
Resumo:
A new numerical emulation algorithm was established to calculate retention parameters in RP-HPLC with several retention times under different linear or nonlinear binary gradient elution conditions and further predict the retention time under any other binary gradient conditions. A program was written according to this algorithm and nine solutes were used to test the program. The prediction results were excellent. The maximum relative error of predicted retention time was less than 0.45%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The mixed mode of reversed phase (RP) and strong canon-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for to and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.
Resumo:
A simple preparation process of alkylamide phase for reversed-phase HPLC (RP-HPLC) is described. The process includes aminopropyltrimethoxysilane firstly reacted with octanoyl chloride, then the intermediate was coupled onto porous silica. The resultant bonded silica has a reproducible ligand surface concentration and homogenous bonded ligand distribution on the porous silica. Characterization of prepared packing was carried out with elemental analysis, solid-state C-13 NMR and Fourier transform infrared (FT-IR). Chromatographic evaluations were carried out by using a mixture of organic compounds including acidic, basic and neutral analytes under methanol/water as binary mobile phase. The results showed that the stationary phase have excellent chromatographic properties and can be efficiently used for the separation of basic compounds.
Resumo:
A new method for the determination of thyroxine in blood is described. It relies upon the quantitative dependence of the distribution of thyroxine between albumin and thyroxine-binding protein when exogenous 131I-labelled thyroxine is added to serum in vitro. Preliminary results suggest an accuracy in the estimate of the hormone of about 5–10%. Results in a group of patients whose plasma P.B.I, levels were also determined are given and shown to be similar.
Resumo:
Stable transparent titania thin films were fabricated at room temperature by combining thenoyltrifluoroacetone (TTFA)-modified titanium precursors with amphiphilic triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO, P123) copolymers. The obtained transparent titania thin films were systematically investigated by IR spectroscopy, PL emission and excitation spectroscopy and transmission electron microscopy. IR spectroscopy indicates that TTFA coordinates the titanium center during the process of hydrolysis and condensation. Luminescence spectroscopy confirms the in-situ formation of lanthanide complexes in the transparent titania thin film.
Resumo:
The synthesis and reactivity of a series of sodium and rare-earth metal complexes stabilized by a dianionic N-aryloxo-functionalized beta-ketoiminate ligand were presented. The reaction of acetylacetone with 1 equiv of 2-amino-4-methylphenol in absolute ethanol gave the compound 4-(2-hydroxy-5-methylphenyl)imino-2-pentanone (LH2, 1) in high yield.
Resumo:
The photophysical properties of the complex Sm(PM)(3)(TP)(2) [PM = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone, TP = triphenyl phosphine oxide] are determined in crystal state, and energy transfer process is modeled for ligands to center Sm(III) ion. The characteristic luminescence of Sm(III) is sensitized by PM and TP, and most of transitions from excited state (4)G(5/2) of Sm3+ are detected.
Resumo:
CdS nanoparticles were successfully prepared by polyol method with PVP-K30 as a surfactant. The microstructure, size and morphology of the products were investigated in detail by XRD, TEM and SEM. The results indicate that uniform CdS nanospheres were achieved. Photoluminescence properties of the resulted nanoparticles (S1 and S3) were investigated, and the results indicate that the CdS nanoparticles could be used as a potential blue light emitting material.
Resumo:
In this study, we investigated the electroluminescence (EL) mechanisms and processes of hole block material in the multilayer devices with Eu(TTA)(3)phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) doped CBP (4,4'-N,N'-dicarbazolebiphenyl) as the light-emitting layer (EML). First, the hole block ability of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was experimentally confirmed by comparing the EL spectra. With increasing hole injection, BCP emission emerges and increases gradually due to the increasing hole penetration from EML into the hole block layer (HBL).