92 resultados para integrated circuit
Resumo:
A new-style silica planar lightwave circuit (PLC) hybrid integrated triplexer, which can demultiplex 1490-nm download data and 1550-nm download analog signals, as well as transmit 1310-nm upload data, is presented. It combines SiO2 arrayed waveguide gratings (AWGs) with integrated photodetectors (PDs) and a high performance laser diode (LD). The SiO2 AWGs realize the three-wavelength coarse wavelength-division multiplexing (CWDM). The crosstalk is less than 40 dB between the 1490- and 1550-nm channels, and less than 45 dB between 1310- and 1490- or 1550-nm channels. For the static performances of the integrated triplexer, its upload output power is 0.4 mW, and the download output photo-generated current is 76 A. In the small-signal measurement, the upstream 3-dB bandwidth of the triplexer is 4 GHz, while the downstream 3-dB bandwidths of both the analog and digital sections reach 1.9 GHz.
Resumo:
A monolithic integrated CMOS preamplifier is presented for neural recording applications. Two AC-coupied capacitors are used to eliminate the large and random DC offsets existing in the electrode-electrolyte interface. Diode-connected nMOS transistors with a negative voltage between the gate and source are candidates for the large resistors necessary for the preamplifier. A novel analysis is given to determine the noise power spectral density. Simulation results show that the two-stage CMOS preamplifier in a closed-loop capacitive feedback configuration provides an AC in-band gain of 38.8dB,a DC gain of 0,and an input-referred noise of 277nVmax, integrated from 0. 1Hz to 1kHz. The preamplifier can eliminate the DC offset voltage and has low input-referred noise by novel circuit configuration and theoretical analysis.
Resumo:
A behavioral model of the photodiode is presented.The model describes the relationship between photocurrent and incident optical power,and it also illustrates the impact of the reverse bias to the variation of the junction capacitance.According to this model,the photodiode and a CMOS receiver circuit are simulated and designed simultaneously under a universal circuit simulation environment.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
We reported here a novel technique for laser high speed drillings on Printed Circuit Boards (PCBs). A CNC solid laser based system is developed to drill through and blind vias as an alternative to mechanical drilling. The system employs an Acousto-Optic Q-switched Nd: YAG laser, a computer control system and an X-Y moving table which can handle up to 400 x 400 mm PCB. With a special designed cavity the laser system works in a pulsed operation in order to generate pulses with width down to 0.5 mu s and maximum peak power over 10kW at 10k repetition rate. Delivered by an improved optical beam transforming system, the focused laser beam can drill hobs including blind vias on PCBs with diameter in the range of 0.1 - 0.4 mm and at up to 300 - 500 vias per second (depending on the construction of PCBs). By means of a CNC X-Y moving system, laser pulses with pulse-to-pulse superior repeatability can be fired at desired location on a PCBs with high accuracy. This alternative technology for drilling through or blind vias on PCBs or PWBs (printed wiring boards) will obviously enhance the capability to printed boards manufacturing.
Resumo:
This paper considers the chaos synchronization of the modified Chua's circuit with x vertical bar x vertical bar function. We firstly show that a couple of the modified Chua systems with different parameters and initial conditions can be synchronized using active control when the values of parameters both in drive system and response system are known aforehand. Furthermore, based on Lyapunov stability theory we propose an adaptive active control approach to make the states of two identical Chua systems with unknown constant parameters asymptotically synchronized. Moreover the designed controller is independent of those unknown parameters. Numerical simulations are given to validate the proposed synchronization approach.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
The Intelligent Measuring Sub-System in the Computer Integrated and Flexible Laser Processing System
Resumo:
Based on the computer integrated and flexible laser processing system, develop the intelligent measuring sub-system. A novel model has been built to compensate the deviations of the main frame, a new-developed 3-D laser tracker system is applied to adjust the accuracy of the system. Analyzing the characteristic of all kinds of automobile dies, which is the main processing object of the laser processing system, classify the types of the surface and border needed to be measured and be processed. According to different types of surface and border, develop 2-D adaptive measuring method based on B?zier curve and 3-D adaptive measuring method based on spline curve. During the data processing, a new 3-D probe compensation method has been described in details. Some measuring experiments and laser processing experiments are carried out to testify the methods. All the methods have been applied in the computer integrated and flexible laser processing system invented by the Institute of Mechanics, CAS.
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
We demonstrate that a Raman sensor integrated with a micro-heater, a microfluidic chamber, and a surface-enhanced Raman scattering (SERS) substrate can be fabricated in a glass chip by femtosecond laser micromachining. The micro-heater and the SERS substrate are fabricated by selective metallization on the glass surface using a femtosecond laser oscillator, whereas the microfluidic chamber embedded in the glass sample is fabricated by femtosecond laser ablation using a femtosecond laser amplifier. We believed that this new strategy for fabricating multifunctional integrated microchips has great potential application for lab-on-a-chips. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes, such as a MZI with a single ring resonator, arepresented, and some of the issues about device design and fabrication are also discussed.
Resumo:
A total integrated scattering (TIS) measurement was performed to investigate the surface and volume scattering of K9 glass substrates with low reflectance. Ag layers with thicknesses of 60 nm were deposited on the front and back surfaces of the K9 glass substrates by the magnetron sputtering technique. Surface scattering of the K9 glass substrate was obtained by the TIS measurement of the Ag layers on the assumption that the Ag layers and the K9 substrate had the same surface profile. Volume scattering of the substrates was deduced by subtracting the front and back surface scattering from the total scattering of the substrates. (c) 2005 Optical Society of America.