469 resultados para TUNABLE PHOTOLUMINESCENCE
Resumo:
Wurtzite stalactite-like quasi-one-dimensional ZnS nanoarrays with ZnO protuberances were synthesized through a thermal evaporation route. The structure and morphology of the samples are studied and the growth mechanism is discussed. X-ray diffraction (XRD) results show both the ZnS stem and the ZnO protuberances have wurtzite structure and show preferred [001] oriented growth. The photoluminescence and field emission properties have also been investigated. Room temperature photoluminescence result shows it has a strong green light emission, which has potential application for green light emitter. Experimental results also show that the stalactite arrays have a good field emission property, with turn-on field of 11.4 V/mu m, and threshold field of 16 V/mu m. The ZnO protuberances on the ZnS stem might enhance the field emission notably.
Photoluminescence study of AlGaInP/GaInP quantum well intermixing induced by zinc impurity diffusion
Resumo:
AlGaInP/GaInP quantum well intermixing phenomena induced by Zn impurity diffusion at 540 degrees C were studied using room-temperature photo luminescence (PL) spectroscopy. As the diffusion time increased from 40 to 120 min, PL blue shift taken on the AlGaInP/GaInP quantum well regions increased from 36.3 to 171.6 meV. Moreover, when the diffusion time was equal to or above 60 min, it was observed firstly that a PL red shift occurred with a PL blue shift on the samples. After detailed analysis, it was found that the red-shift PL spectra were measured on the Ga0.51In0.49P buffer layer of the samples, and the mechanism of the PL red shift and the PL blue shift were studied qualitatively. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Self-assembled InAs quantum dots were prepared on GaAS(100)) substrate in a solid source molecular beam epitaxy system The distribution and topographic images of uncapped dots were studied by atomic force microscope. The statistical result shows that the quantum dots are bimodal distribution. The photoluminescence spectrum results shows that the intensity of small size quantum dots dominated, which may be due to: (1) the state density of large quantum dots lower than that of small quantum dots; (2) the carriers capture rate of large size quantum dots is small relative to that of small ones; (3) there is a large strain barrier between large quantum dots and capping layer, and the large strain is likely to produce the defect and dislocation, resulting in a probability carriers transferring from large quantum dots to small dots that is very small with temperature increasing.
Resumo:
The hole-mediated Curie temperature in Mn-doped wurtzite ZnO nanowires is investigated using the k center dot p method and mean field model. The Curie temperature T-C as a function of the hole density has many peaks for small Mn concentration (x(eff)) due to the density of states of one-dimensional quantum wires. The peaks of T-C are merged by the carriers' thermal distribution when x(eff) is large. High Curie temperature T-C > 400 K is found in (Zn,Mn)O nanowires. A transverse electric field changes the Curie temperature a lot. (Zn,Mn)O nanowires can be tuned from ferromagnetic to paramagnetic by a transverse electric field at room temperature. (c) 2007 American Institute of Physics.
Resumo:
The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.
Resumo:
A discretely tunable Er-doped fiber-ring laser using a fiber Mach-Zehnder interferometer (MZI) and a tunable fiber Bragg grating (FBG) is proposed. In this scheme, the combination of MZI and FBG acts as a discrete wavelength selector. Analysis of its transmission function shows that discrete wavelength tuning can be realized, and experiments demonstrate 64 single-mode outputs with a mode spacing of 181.7 pm, and the output power is quite stable in the whole tuning range. (C) 2009 Wiley Periodicals, Inc. Microwave Opt Technol Lett 51 2595-2598, 2009; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/mop.24690
Resumo:
Undoped GaSb was irradiated by 2.6 MeV protons. The irradiation-induced defects were studied by positron lifetime spectroscopy (PLS) and photoluminescence (PL). Positron lifetime measurements showed that vacancy-type defects were introduced after irradiation, and divacancies were formed at higher irradiation dose. Annealing experiments revealed there were different annealing steps between the as grown and proton-irradiated samples, the reason for which was tentatively attributed to the formation of divacancies in the proton-irradiated samples during annealing. All the vacancy defects could be annealed out at around 500 degrees C. The PL intensity quickly fell down after proton irradiation and decreased with increasing irradiation dose, indicating that irradiation induced non-irradiative recombination centers, whose candidates were assigned to the vacancy defects induced by proton irradiation.
Resumo:
A two-step approach of preparation for SiGe/Si heterogeneous nanostructures, which combined with ultra-high vacuum chemical deposition and electrochemical anodization techniques, is demonstrated. Uniformly distributed nanostructures with a quite uniform distribution of size and morphology are obtained. A strong room-temperature photoluminescence from the nanostructures was observed with a narrow full-width at half-maximum of around 110 meV. The possible origins of the two main peaks at around 1.6 and 1.8 eV have been discussed in detail. The two-step approach is proved to be a promising method to fabricate new Si-based optoelectronic materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper compares the properties of silicon oxide and nitride as host matrices for Er ions. Erbium-doped silicon nitride films were deposited by a plasma-enhanced chemical-vapour deposition system. After deposition, the films were implanted with Er3+ at different doses. Er-doped thermal grown silicon oxide films were prepared at the same time as references. Photoluminescence features of Er3+ were inspected systematically. It is found that silicon nitride films are suitable for high concentration doping and the thermal quenching effect is not severe. However, a very high annealing temperature up to 1200 degrees C is needed to optically activate Er3+ which may be the main obstacle to impede the application of Er-doped silicon nitride.
Resumo:
Evolution of surface morphology and optical characteristics of 1.3-mu m In0.5Ga0.5As/GaAs quantum dots (QDs) grown by molecular beam epitaxy (MBE) are investigated by atomic force microscopy (AFM) and photoluminescence (PL). After deposition of 16 monolayers (ML) of In0.5Ga0.5As, QDs are formed and elongated along the [110] direction when using sub-ML depositions, while large size InGaAs QDs with better uniformity are formed when using ML or super-ML depositions. It is also found that the larger size QDs show enhanced PL efficiency without optical nonlinearity, which is in contrast to the elongated QDs.
Resumo:
A 1.55 mu m InGaAsP-InP index-coupled two-section DFB self-pulsation laser (SPL) with a varied ridge width has been fabricated. A record wide self-pulsation tuning range above 450 GHz has been achieved for this index-coupled DFB SPL. Furthermore, frequency locking to an optically injected modulated signal is successfully demonstrated.
Resumo:
We report on the fabrication of the nanowires with InGaAs/GaAs heterostructures on the GaAs(111) B substrate using selective-area metal organic vapor phase epitaxy. Fabry-Perot microcavity modes were observed in the nanowires with perfect end facets dispersed onto the silicon substrate and not observed in the free-standing nanowires. We find that the calculated group refractive indices only considering the material dispersion do not agree with the experimentally determined values although this method was used by some researchers. The calculated group refractive indices considering both the material dispersion and the waveguide dispersion agree with the experimentally determined values well. We also find that Fabry-Perot microcavity modes are not observable in the nanowires with the width less than about 180 nm, which is mainly caused by their poor reflectivity at the end facets due to their weak confinement to the optical field. (C) 2009 Optical Society of America
Resumo:
The electric-tunable spin-independent magneto resistance effect has been theoretically investigated in ballistic regime within a two-dimensional electron gas modulated by magnetic-electric barrier nanostructure. By including the omitted stray field in previous investigations oil analogous structures, it is demonstrated based on this improved approximation that the magnetoresistance ratio for the considered structure can be efficiently enhanced by a proper electric barrier up to the maximum value depending on the specific magnetic suppression. Besides, it is also shown the introduction of positive electrostatic modulation can effectively overcome the degradation of magnetoresistance ratio for asymmetric configuration and enhance the visibility of periodic pattern induced by the size effect, while for an opposite modulation the system magnetoresistance ratio concerned may change its sign. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We report a room temperature study of the direct band gap photoluminescence of tensile-strained Ge/Si0.13Ge0.87 multiple quantum wells grown on Si-based germanium virtual substrates by ultrahigh vacuum chemical vapor deposition. Blueshifts of the luminescence peak energy from the Ge quantum wells in comparison with the Ge virtual substrate are in good agreement with the theoretical prediction when we attribute the luminescence from the quantum well to the c Gamma 1-HH1 direct band transition. The reduction in direct band gap in the tensile strained Ge epilayer and the quantum confinement effect in the Ge/Si0.13Ge0.87 quantum wells are directly demonstrated by room temperature photoluminescence.
Resumo:
The effect of beta particles interaction on the optical properties of MOCVD grown GaN is reported. A significant change in luminescence properties of GaN is observed after exposing the material with 0.6 MeV beta particles with low dose of 10(12) cm(-2). The results obtained from photoluminescence measurements of irradiated GaN samples in low dose are found contradictory to those reported in literature for samples irradiated with heavy dose (> 10(15) cm(-2)) of electron. An increase in intensity of yellow luminescence has been observed with increasing dose of beta particles which is in disagreement to the already reported results in literature for heavily irradiated samples. A model has been proposed to sort out this inconsistency. The increase in YL intensity at low dose is attributed to the increase in concentration of VGaON complex whereas production of non-radiative VGaON clusters is assumed to justify the decrease in YL intensity at high dose.