425 resultados para Quantum Hall effect
Resumo:
Hall effect, photoluminescence spectroscopy (PL), mass spectroscopy and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed seeded chemical vapor transport method. Enhancement of n-type electrical conduction and increase of nitrogen concentration are observed of the ZnO samples after high temperature annealing. The results suggest that vacancy is dominant native defect in the ZnO material. These phenomena are explained by a generation of shallow donor defect and suppression of deep level defects in ZnO after the annealing.
Resumo:
Hall effect, photoluminescence (PL), infrared absorption, deep level transient spectroscopy (DLTS), and Raman scattering have been used to study property and defects of ZnO single crystal grown by a chemical vapor transport method (CVT). As-grown ZnO is N type with free electron density Of 10(16)-10(17)cm(-3). It has a slight increase after 900 degrees C annealing in oxygen ambient. The DLTS measurement revealed four deep level defects with energy at 0.30eV, 0.50eV, 0.68eV and 0.90eV in the as-grown ZnO sample, respectively. After the high temperature annealing, only the 0.5eV defect survive and has a concentration increase. PL results of the as-grown and annealed ZnO indicate that the well-known green emission disappear after the annealing. The result suggests a correlation between the 0.68eV defect and the green PL peak. Results of P-doped ZnO were also compared with the undoped ZnO sample. The nature of the defects and their influence on the material property have been discussed.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.
Resumo:
3C-SiC is a promising material for the development of microelectromechanical systems (MEMS) applications in harsh environments. This paper presents the LPCVD growth of heavily nitrogen doped polycrystalline 3C-SiC films on Si wafers with 2.0 mu m-thick silicon dioxide (SiO2) films for resonator applications. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H-2 in a newly developed vertical CVD chamber. NH3 was used as n-type dopant. 3C-SiC films were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS), and room temperature Hall Effect measurements. It was shown that there is no voids at the interface between 3C-SiC and SiO2. Undoped 3C-SiC films show n-type conduction with resisitivity, Hall mobility, and carrier concentration at room temperature of about 0.56 Omega center dot cm, 54 cm(2)/Vs, and 2.0x 10(17) cm(-3), respectively. The heavily nitrogen doped polycrystalline 3C-SiC with the resisitivity of less than 10(-3) Omega center dot cm was obtained by in-situ doping. Polycrystalline SiC resonators have been fabricated preliminarily on these heavily doped SiC films with thickness of about 2 mu m. Resonant frequency of 49.1 KHz was obtained under atmospheric pressure.
Resumo:
A wide bandgap and highly conductive p-type hydrogenated nanocrystalline silicon (nc-Si:H) window layer was prepared with a conventional RF-PECVD system under large H dilution condition, moderate power density, high pressure and low substrate temperature. The optoelectrical and structural properties of this novel material have been investigated by Raman and UV-VIS transmission spectroscopy measurements indicating that these films are composed of nanocrystallites embedded in amorphous SiHx matrix and with a widened bandgap. The observed downshift of the optical phonon Raman spectra (514.4 cm(-1)) from crystalline Si peak (521 cm(-1)) and the widening of the bandgap indicate a quantum confinement effect from the Si nanocrystallites. By using this kind of p-layer, a-Si:H solar cells on bare stainless steel foil in nip sequence have been successfully prepared with a V c of 0.90 V, a fill factor of 0.70 and an efficiency of 9.0%, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The magnetocapacitive response of a double-barrier structure (DBS), biased beyond resonances, has been employed to determine the density of states (DOS) of the two-dimensional electron gas residing in the accumulation layer on the incident side of the DBS. An adequate procedure is developed to compare the model calculation of the magnetocapacitance with the experimental C vs B curves measured at different temperatures and biases. The results show that the fitting is not only self-consistent but also remarkably good even in well-defined quantum Hall regimes. As a result, information about the DOS in strong magnetic fields could reliably be extracted.
Resumo:
A theoretical model for the electronic structure of porous Si is presented. Three geometries of porous Si (wire with square cross section, pore with square cross section, and pore with circular cross section) along both the [001] and [110] directions are considered. It is found that the confinement geometry affects decisively the ordering of conduction-band states. Due to the quantum confinement effect, there is a mixing between the bulk X and GAMMA states, resulting in finite optical transition matrix elements, but smaller than the usual direct transition matrix elements by a factor of 10(-3). We found that the strengths of optical transitions are sensitive to the geometry of the structure. For (001) porous Si the structure with circular pores has much stronger optical transitions compared to the other two structures and it may play an important role in the observed luminescence. For this structure the energy difference between the direct and the indirect conduction-band minima is very small. Thus it is possible to observe photoluminescence from the indirect minimum at room temperature. For (110) porous Si of similar size of cross section the energy gap is smaller than that of (001) porous Si. The optical transitions for all three structures of (110) porous Si tend to be much stronger along the axis than perpendicular to the axis.
Resumo:
The transient charge response Q(t) of a two-dimensional electron gas (2DEG) in GaAs/AlxGa1-xAs heterostructures to a small pulse of the gate voltage, applied between the top gate and source electrodes in a Corbino structure, was employed to directly measure the effective diffusion constant of a 2DEG in the quantum Hall regime. The measured diffusion constant D showed a drastic change as the magnetic field was swept through the integer fillings of the Landau levels.
Resumo:
Thermoluminescence (TL) of CdS clusters encapsulated in zeolite-Y is reported for the first time. The TL of the clusters is much stronger than that of the bulk CdS and increases as the CdS loading decreases. This inverse dependence of TL intensity upon CdS loading is caused mainly by the size-effect of the clusters. All samples exhibit almost the same glow peak position and shape, indicating that traps or surface states are not sensitive to the cluster sizes.
Resumo:
CdS clusters in zeolite-Y have been prepared by the exchange of Cd2+ into the zeolite following by sulfurization with Na2S in solution. Blue-shifts from the bulk caused by quantum size effect and the change of absorption upon CdS loading are observed. Two absorption bands are detected for one of the sample and are assigned to the 1s-1s band and exciton transition, respectively. The exciton feature is more pronounced in the excitation spectrum than in the absorption spectrum, and the luminescence excited at the exciton band is stronger than that at the 1s-1s band. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
Phosphorus was diffused into CVT grown undoped ZnO bulk single crystals at 550 and 800℃ in a closed quartz tube. The P-diffused ZnO single crystals were characterized by the Hall effect, X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL), and Raman scattering. The P-diffused ZnO single crystals are n-type and have higher free electron concentration than undoped ZnO, especially for the sample diffused at 800℃. The PL measurement reveals defect related visible broad emissions in the range of 420-550nm in the P-diffused ZnO samples. The XPS result suggests that most of the P atoms substitute in the Zn site after they diffuse into the ZnO single crystal at 550℃ ,while the P atom seems to occupy the O site in the ZnO samples diffused at 800℃. A high concentration of shallow donor defect forms in the P-diffused ZnO,resulting in an apparent increase of free electron concentration.
Resumo:
This paper presents the development of LPCVD growth of 3C-SiC thin films grown on Si mesas and thermally oxidized SiO2 masks over Si with an area of 150 × 100μm^2 and SiO2/Si substrates. The growth has been performed via chemical vapor deposition using SiH4 and C2H4 precursor gases with carrier gas of H2. 3C-SiC films on these substrates were characterized by optical microscopy, X-ray diffraction ( XRD ), X-ray photoelectron spectroscopy ( XPS ), scanning electron microscopy (SEM) and room temperature Hall effect measurements. It is shown that there were no voids at the interface between 3C-SiC and SiO2.
Resumo:
Properties of Fe-doped semi-insulating (SI) InP with different iron concentrations are studied by using Hall effect, current-voltage (I-V), photoluminescence spectroscopy (PL) and photocurrent spectroscopy (PC) measurements. I-V characteristics of SI InP strongly depend on Fe doping concentration. Fe doping concentration also influences optical properties and defective formation in as-grown SI InP. Band-gap narrowing phenomenon and defects in Fe doped SI InP are studied using PI and PC.
Resumo:
The electrical properties of annealed undoped n-type InP are studied by temperature dependent Hall effect (TDH) and current-voltage (I-V) measurements for semiconducting and semi-insulating samples, receptively. Defect band conduction in annealed semiconducting InP can be observed from TDH measurement, which is similar to those of as-grown unintentionally doped InP with low carrier concentration and moderate compensation. The I-V curves of annealed undoped SI InP exhibit ohmic property in the applied field region up to the onset of breakdown. Such a result is different from that of as-grown Fe-doped SI InP which has a nonlinear region in I-V curve explained by the theory of space charge limited current.