175 resultados para QCD PHASE-TRANSITION
Resumo:
Papaseit et al. (Proc. Nati. Acad. Sci. U.S.A. 97, 8364, 2000) showed the decisive role of gravity in the formation of patterns by assemblies of microtubules in vitro. By virtue of a functional scaling, the free energy for MT systems in a gravitational field was constructed. The influence of the gravitational field on MT's self-organization process, that can lead to the isotropic to nematic phase transition, is the focus of this paper. A coupling of a concentration gradient with orientational order characteristic of nernatic ordering pattern formation is the new feature emerging in the presence of gravity. The concentration range corresponding to a phase coexistence region increases with increasing g or NIT concentration. Gravity facilitates the isotropic to nernatic phase transition leading to a significantly broader transition region. The phase transition represents the interplay between the growth in the isotropic phase and the precipitation into the nematic phase. We also present and discuss the numerical results obtained for local NIT concentration change with the height of the vessel, order parameter and phase transition properties.
Resumo:
With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We End that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only. According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.
Resumo:
We have observed strong scattering of a probe light by dilute Bose-Einstein condensate (BEC) Rb-87 gas in a tight magnetic trap. The scattering light forms fringes at the image plane. It is found that we can infer the real size of the condensation and the number of the atoms by modelling the imaging system. We present a quantitative calculation of light scattering by the condensed atoms. The calculation shows that the experimental results agree well with the prediction of the generalized diffraction theory, and thus we can directly observe the phase transition of BEC in a tight trap.
Resumo:
利用直流磁控溅射法在不同氧氩分压比条件下制备了BiOx薄膜。通过对薄膜在蓝光作用前后的反射率对比度变化的研究发现,氧氩分压比为50%时制备的薄膜具有最佳的光学对比度。利用X射线衍射仪(XRD)、X光电子能谱(XPS)和光谱仪研究了薄膜热处理前后的结构和光谱性质的变化。研究结果表明薄膜光学性质变化主要由薄膜中氧化铋的相变引起。蓝光静态测试结果显示氧氩分压比为50%条件下制备的BiOx薄膜具有很好好的记录敏感度,在11mW的记录功率和800ns的记录脉宽条件下,得到了52%的反射率对比度。此外,BiOx薄膜表现出了非常好的读出稳定性。
Resumo:
Fe:BiOx films are fabricated on K9 glass substrates by rf-magnetron sputtering of a BiFeO target under argon atmosphere with increasing sputtering power from 80 to 200 W at room temperature. It is found that the thin films grown at the sputtering power of 160W can be formed at an appropriate deposition rate and have an improved surface morphology. The XPS result reveals that the films investigated are comprised of Bi, Fe and O elements. A typical XRD pattern shows that no phase transition occurs in the films up to 400 degrees C. The results of the blue laser recording test demonstrate that the Fe:BiOx films have good writing sensitivity for blue laser beam (406.7 nm) and good stability after reading 10000 times. The recording marks of 200nm or less are obtained. These results indicate that the introduction of Fe into BiOx films can reduce the mark size and improve the stability of the films.
Resumo:
The effect of laser fluence on the crystallization of amorphous silicon irradiated by a frequency-doubled Nd:YAG laser is studied both theoretically and experimentally. An effective numerical model is set up to predict the melting threshold and the optimized laser fluence for the crystallization of 200-nm-thick amorphous silicon. The variation of the temperature distribution with time and the melt depth is analyzed. Besides the model, the Raman spectra of thin films treated with different fluences are measured to confirm the phase transition and to determine the optimized fluence. The calculating results accord well with those obtained from the experimental data in this research. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Four kinds of Y2O3 stabilized ZrO2 (YSZ) thin films with different Y2O3 content have been prepared on BK7 substrates by electron-beam evaporation method. Structural properties and surface morphology of thin films were investigated by X-ray diffraction (XRD) spectra and scanning probe microscope. Laser induced damage threshold (LIDT) was determined. It was found that crystalline phase and microstructure of YSZ thin films was dependent on Y2O3 molar content. YSZ thin films changed from monoclinic phase to high temperature phase (tetragonal and cubic) with the increase of Y2O3 content. The LIDT of stabilized thin film is more than that of unstabilized thin films. The reason is that ZrO2 material undergoes phase transition during the course of e-beam evaporation resulting in more numbers of defects compared to that of YSZ thin films. These defects act as absorptive center and the original breakdown points. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
A fluorescence immunoassay for human IgG (Ag) was developed using a pH-sensitive polymer prepared by thermal initiation or redox initiation polymerization as a carrier. In the competitive immunoassay, appropriate quantity of Ag was immobilized on the polymer and the standard Ag (or sample) solution, and a constant amount of fluorescein isothiocyanate labeled goat anti-human IgG antibody (Ab-FITC) was added. Immobilized Ag and the standard (or sample) Ag competed for binding to the Ab-FITC in 37 C in homogeneous format. After changing the pH to separate the polymer-immune complex precipitate, it was re-dissolved and determined by fluorescence method. The results showed that the immobilization efficiency, immunological reaction activities of immobilized Au and phase transition pH range were improved as Ag was immobilized by thermal initiation instead of redox initiation polymerization. Under optimum conditions, the calibration graphs for the Ag in both methods, thermal initiation and redox initiation, were linear over the concentration range of 0.0-1000 ng mL(-1), with detection limits 8 (thermal initiation) and 12 ng mL(1) (redox initiation), respectively. Moreover, some pH-sensitive polymer prepared only in organic solvent or under high temperature could also be used as an immunoreaction carrier by thermal initiation polymerization. Thermal initiation polymerization was a better immobilization mode. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The mechanical properties, electronic structure and phonon dispersion of ground state ThO2 as well as the structure behavior up to 240 GPa are studied using first-principles density-functional theory. Our calculated elastic constants indicate that both the ground-state fluorite structure and high pressure cotunnite structure of ThO2 are mechanically stable. The bulk modulus, shear modulus, and Young's modulus of cotunnite ThO2 are all smaller by approximately 25% compared with those of fluorite ThO2. The Poisson's ratios of both structures are approximately equal to 0.3 and the hardness of fluorite ThO2 is 22.4 GPa. The electronic structure and bonding nature of fluorite ThO2 are fully analyzed, and show that the Th-O bond displays a mixed ionic/covalent character. The phase transition from the fluorite to cotunnite structure is calculated to occur at the pressure of 26.5 GPa, consistent with recent experimental measurement by ldiri et al. [1]. For the cotunnite phase it is further predicted that an isostructural transition takes place in the pressure region of 80-130 GPa.
Resumo:
The luminescence from Eu2+ ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) -> 4f(7) transition of Eu2+ ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu2+ comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) -> 4f(7) transition of Eu2+. Above 5 GPa, the pressure behavior of the 4f(6)5d(1) -> 4f(7) transition of EU2+ in BaF2: EU2+ is the same as the normal emission of Eu2+ in CaF2 and SrF2 phosphors.
Resumo:
A series of silicon film samples were prepared by plasma enhanced chemical vapor deposition (PECVD) near the threshold from amorphous to nanocrystalline state by adjusting the plasma parameters and properly increasing the reactions between the hydrogen plasma and the growing surface. The microstucture of the films was studied by micro-Raman and Fourier transform infrared (FTIR) spectroscopy. The influences of the hydrogen dilution ratio of silane (R-H = [H-2]/[SiH4]) and the substrate temperature (T-s) on the microstructural and photoelectronic properties of silicon films were investigated in detail. With the increase of RH from 10 to 100, a notable improvement in the medium-range order (MRO) of the films was observed, and then the phase transition from amorphous to nanocrystalline phase occurred, which lead to the formation of diatomic hydrogen complex, H-2* and their congeries. With the increase of T-s from 150 to 275 degreesC, both the short-range order and the medium range order of the silicon films are obviously improved. The photoconductivity spectra and the light induced changes of the films show that the diphasic nc-Si/a-Si:H films with fine medium-range order present a broader light spectral response range in the longer wavelength and a lower degradation upon illumination than conventional a-Si:H films. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).
Resumo:
An effective method is developed to fabricate metallic microcircuits in diamond anvil cell (DAC) for resistivity measurement under high pressure. The resistivity of nanocrystal ZnS is measured under high pressure up to 36.4 GPa by using designed DAC. The reversibility and hysteresis of the phase transition are observed. The experimental data is confirmed by an electric current field analysis accurately. The method used here can also be used under both ultrahigh pressure and high temperature conditions.
Resumo:
The center-of-mass motion of a quasi-two-dimensional exciton with spin-orbit coupling (SOC) in the presence of a perpendicular electric field is calculated by perturbation theory. The results indicate that a quasi-two-dimensional exciton with SOC can exhibit the spin Hall effect (SHE), which is similar to two-dimensional electrons and holes. A likely way to establish exciton SHE in experiments and a possible phase transition from dark to bright state driven by SOC are suggested. (c) 2007 American Institute of Physics.