224 resultados para Photoluminescence measurements
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) measurements were performed on several series of single-side Si-doped pseudomorphic high electron mobility transistors (p-HEMTs) quantum well (QW) samples, with different spacer layer widths, well widths and Si delta -doped concentrations , under different temperatures and excitation power densities. The dynamic competitive luminescence mechanism between the radiations of e2-hh1 and e1-hh1 was discussed in detail. The confining potential, subband energies, corresponding envelope functions, subband occupations and transferring efficiency etc., were calculated by self-consistent finite differential method at different temperatures in comparison with the present experiment results. The relative variation of the integrated luminescence intensity of the two transitions (e1-hh1 and e2-hh1) was found to be dependent on the temperature and the structure's properties, e. g. spacer layer width, dopant concentration and well width.
Resumo:
Manganese doped CdS nanoparticles were synthesized in basic aqueous solution by using mercapto acetate as capping reagents. The nanoparticles were characterized by HRTEM, EPR, photoluminescence and optical absorption measurements. Out of our expectation, doping of Mn2+ ions altered the recombination paths in CdS nanoparticles markedly. The surface stares facilitated PL from Mn2+ doped CdS nanoparticles is reported. A complete suppression of the emission from surface states at room temperature when doping with Mn2+ ions has been observed for the first time. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Deep levels in undoped GaN materials grown by modified molecular beam epitaxy (MBE) are investigated by photoluminescence (PL) and optical quenching of photoconductivity measurements. A broad band which extends from 2.1 to 3.0 eV with a maximum at about 2.7 eV is observed, and four prominent quenching bands were found located at 2.18, 2.40, 2.71, and 2.78 eV above the valence band, respectively. These levels are attributed to four holes trap levels existence in the material. The defects cannot be firmly identified at present. (C) 2000 Elsevier Science B.V, All rights reserved.
Resumo:
We investigated the photoluminescence (PL) of self-assembled In0.55Al0.45As/Al0.5Ga0.5As quantum dots (QDs) grown on (311)A GaAs substrate. The PL peak at 10 K shifts to lower energy by about 30 meV when the excitation power decreases by two orders of magnitude. It has a red-shift under pressure, that is the character of X-like transition. Moreover, its peak energy is smaller than the indirect gap of bulk Al0.5Ga0.5As and In0.55Al0.45As. We then attribute that peak to the type-II transition between electrons in X valley of Al0.5Ga0.5As and heavy holes in In0.55Al0.45As QDs. A new peak appears at the higher energy when temperature is increased above 70 K. It shifts to higher energy with increasing pressure, corresponding to the transition from conduction Gamma band to valence band in QDs. The measurements demonstrate that our In0.55Al0.45As/Al0.5Ga0.5As quantum dots are type-II QDs with X-like conduction-band minimum. To interpret the second X-related peak emerged under pressure, we discuss the X-valley split in QDs briefly. (C) 2000 American Institute of Physics. [S0003-6951(00)04622-2].
Resumo:
Cubic InxGa1-xN films were successfully grown on GaAs(001) substrates by metalorganic chemical-vapor deposition. The values of x content ranging from 0.10 to 0.24 obtained at different growth conditions were measured by double-crystal x-ray diffraction (XRD). The perpendicular and parallel elastic strain of the In0.2Ga0.8N layer, epsilon(perpendicular to)=0.4% and epsilon(parallel to)=-0.4% for GaN and epsilon(perpendicular to)=0.37% and epsilon(parallel to)=-0.37% for InGaN, respectively, were derived using the XRD measurements. The inhomogeneous strain and the average grain size of the In0.2Ga0.8N/GaN films were also studied by XRD. Photoluminescence spectra were used to measure the optical characterization of the InxGa1-xN thin films with different In composition, and the near-band-edge emission dependence of cubic InxGa1-xN on the x value is nearly linear with In content x less than or equal to 0.24. (C) 2000 American Institute of Physics. [S0021-8979(00)03908-6].
Resumo:
Variable temperature photoluminescence (PL) measurements for In0.3Ga0.7As(6 nm)/GaAs(34 nm) quantum dot superlattices with a period of 20 and an In0.3Ga0.7As(6 nm)/GaAs(34 nm) reference single quantum well have been conducted. It is found that the temperature dependence is different between the quantum dots and the reference single quantum well. The PL peak energy of the single quantum well decreases faster than that of the quantum dots with increasing temperature. The PL peak energy for the InGaAs/GaAs quantum dots closely follows the InAs band gap in the temperature range from 11 to 170 K, while the PL peak energy for the InGaAs/GaAs quantum well closely follows the GaAs band gap. In comparison with InAs/GaAs quantum dots, the InGaAs/GaAs quantum dots are more typical as a zero-dimensional system since the unusual PL results, which appear in the former, are not obvious for the latter. (C) 1999 American Institute of Physics. [S0021-8979(99)08615-6].
Resumo:
Two types of InAs self-assembled Quantum dots (QDs) were prepared by Molecular beam epitaxy. Atomic force microscopy (AFM) measurements showed that, compared to QDs grown on GaAs substrate, QDs grown on InGaAs layer has a significantly enhanced density. The short spacing (several nanometer) among QDs stimulates strong coupling and leads to a large red-shift of the 1.3 mu m photoluminescence (PL) peak. We study systematically the dependence of PL lifetime on the QDs size, density and temperature (1). We found that, below 50 K, the PL lifetime is insensitive to temperature, which is interpreted from the localization effects. As T increases, the PL lifetime increases, which can be explained from the competition between the carrier redistribution and thermal emission at higher temperature. The increase of carriers in QDs migrated from barriers and wetting layer (WL), and the redistribution of carriers among QDs enhance the PL lifetime as T increases. The thermal emission and non-radiative recombination have effects to reduce the PL lifetime at higher T. As a result, the radiative recombination lifetime is determined by the wave function overlapping of electrons and holes in QDs, and QDs with different densities have different PL lifetime dependence on the QDs size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Hot electrons excited from the valence band by linearly polarized laser light are characterized by certain angular distributions in momenta. Owing to such angular distributions in momenta, the photoluminescence from the hot electrons shows a certain degree of polarization. A theoretical treatment of this effect observed in the photoluminescence in quantum wells is given, showing that the effect depends strongly on heavy and light hole mixing. The very large disparity between the experimentally observed and theoretically expected values of the degree of polarization in the hot-electron photoluminescence suggests the presence of random quasielastic scattering. The effects of such additional scattering and the presence of a perpendicular magnetic field are incorporated into the theory. it is shown that the measurements of the degree of polarization observed in the hot electron photoluminescence, with and without an applied perpendicular magnetic field can serve to determine the time constants for both LO-phonon inelastic and random quasielastic scattering. As an example, these time constants are determined for the experiments reported in the literature.
Resumo:
Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.
Photoluminescence characterization of 1.3 mu m In(Ga)As/GaAs islands grown by molecular beam epitaxy
Resumo:
1.3 mum wavelength In(Ga)As/GaAs nanometer scale islands grown by molecular beam epitaxy (MBE) were characterized by photoluminescence (PL) and atomic force microscopy (AFM) measurements. It is shown that inhomogeneous broadening of optical emission due to fluctuation of the In0.5Ga0.5As islands both in size and in compositions can be effectively suppressed by introducing a AlAs layer and a strain reduction In0.2Ga0.8As layer overgrown on top of the islands, 1.3mum emission wavelength with narrower line-width less than 20meV at room temperature was obtained.
Resumo:
Comparative electroluminescence (EL) and photoluminescence (PL) measurements were performed on Si/Si0.6Ge0.4 self-assembly quantum dots (QDs) structures. The samples were grown pseudomorphically by molecular beam epitaxy, and PIN diodes for electroluminescence were fabricated. Assisted TEM pictures shows the SiGe self-assembly QDs are platelike. And it showed that the diameters of QDs are in range from 40nm to 140nm with the most in 120nm. Both EL and PL has a wide luminescence peak due to wide distribution of QDs dimensions. At low temperature (T=14K), EL peak has a red shift compared to the corresponding PL peak. Its full-width at half-maximum (FWHM) is about 97meV, a little smaller than that of corresponding PL peak. The reasons of position and FWHM changes of EL peak from QDs have been discussed.
Resumo:
Amorphous Sic films are deposited on Si (111) substrates by rf magnetron sputtering and then annealed at 1200 degreesC for different times by a dc self-heating method in a vacuum annealing system. The crystallization of the amorphous Sic is determined by Raman scattering at room temperature and X-ray diffraction. The experimental result indicates that the Sic nanocrystals have formed in the films. The topography of the as-annealed films is characterized by atomic force microscopy. Measurements of photoluminescence of the as-annealed films show blue or violet light emission from the nanocrystalline Sic films and photoluminescence peak shifts to short wavelength side as the annealing time decreases.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10(15) ions/cm(2) and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10(13) ions/cm(2). The FTIR spectra showed a broaden absorption band between 460 and 630 cm(-1), indicating that strong damaged region formed in Al2O3.