331 resultados para LASER-DIODE
Resumo:
A 1.55-mu m single shallow ridge electroabsorptionmodulated distributed feedback laser that is monolithically integrated with a buried-ridge-stripe dual-core spot-size converter (SSC) at the input and output ports was fabricated by combining selective area growth, quantum-well intermixing, and dual-core integration techniques simultaneously. These devices exhibit a threshold current of 34 mA, a side mode suppression ratio of 38.0 dB, a 3-dB modulation bandwidth of 11.0 GHz, and a modulator extinction ratio of 25.0 dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 7.3 degrees x 18 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
Electrical and optical coupling in an electroabsorption (EA) modulator integrated with a distributed feedback (DFB) laser have been investigated. The integrated device is treated as a three-port optoelectronic device with two electrical ports and one optical output port. The scattering parameters of this three-port device have been measured in the designed experiment. The measured results indicate that there exists the electrical coupling between the DFB laser and EA modulator of the integrated light source whenever the current applied to the laser section is below or above the threshold current, and the optical coupling will have stronger influence on the frequency responses than the electrical coupling when the bias current is above the threshold. A small-signal equivalent circuit model for the integrated device is established considering both the electrical and internal optical coupling. Experiments show that the equivalent circuit model is reasonable and the determined element values are correct. Based on the measurement and modeling, the influences of the electrical and optical coupling on the high-frequency responses are investigated and the effective measure to eliminate the additional modulation in the DFB laser are discussed.
Resumo:
Usually GaAs/AlGaAs is utilized as an active layer material in laser diodes operating in the spectral range of 800 850 nm. In this work, in addition to a traditional unstrained GaAs/AlGaAs distributed feedback (DFB) laser diode, a compressively strained InGaAlAs/AlGaAs DFB laser diode is numerically investigated in characteristic. The simulation results show that the compressively strained DFB laser diode has a lower transparency carrier density, higher gain, lower Auger recombination rate, and higher stimulated recombination rate, which lead to better a device performance, than the traditional unstrained GaAs/AlGaAs DFB laser diode.
Resumo:
An elaborate analysis of the parasitic network of high-speed through-hole packaging (TO)-type laser modules is presented using a small-signal equivalent circuit model. The intrinsic laser diode is obtained using the optical modulation technique, and is embedded into the model as a separate component. Three step-by-step measurements are made for determining the packaging parasitic network, including the test fixture, TO header, submount, bonding wire, and parasitics of the laser chip. A good agreement between simulated and measured results confirms the validation and accuracy of the characterization procedures. Furthermore, several key parasitic elements are found based on the simulation of the high-frequency responses of the packaged devices. It is expected that the 3-dB bandwidth of 12 GHz or more of the low-cost TO packaged laser module may be achieved using the proposed optimization method.
Resumo:
National Natural Science Foundation of China 60506001 60776047 60476021 60576003 60836003;National Basic Research Programme of China 2007CB936700
Resumo:
Studies on InGaN multiple quantum well blue-violet laser diodes have been reported. Laser structures with long-period multiple quantum wells were grown by metal-organic chemical vapor deposition. Triple-axis X-ray diffraction (TAXRD) measurements show that the multiple quantum wells were high quality. Ridge waveguide laser diodes were fabricated with cleaved facet mirrors. The laser diodes lase at room temperature under a pulsed current. A threshold current density of 3.3 kA/cm(2) and a characteristic temperature To of 145 K were observed for the laser diode.
Resumo:
A simple cw mode-locked solid-state laser, which is end-pumped by a low-power laser diode, was demonstrated by optimizing the laser-mode size inside the gain medium. The optimum ratio between mode and pump spot sizes inside the laser crystal was estimated for a cw mode-locked laser, taking into account the input pump power. Calculation and experiment have shown that the optimum ratio was about 3 when the pump power is 2 W, which is different from the value regularly used in passively mode-locked solid-state lasers. This conclusion is also helpful in increasing the efficiency of high-power ultrashort lasers. (C) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A high-power AlGaInP laser diode with current-injection-free region near the facet is successfully fabricated by metaorganic chemical vapor deposition (MOCVD) using the (100) direction n-GaAs substrates with a misorientation of 15 deg toward the (011) direction. The maximum continuous wave output power is about 90 mW for the traditional structure. In comparison, the maximum output power is enhanced by about 67%, and achieves 150 mW for LDs with current-infection-free regions. The fundamental transverse-mode operation is obtained up to 70 mW. Output characteristics at high temperatures are also improved greatly for an LD with a current-injection-free region, and the highest operation temperature is 70 C at 50 mW without kink. The threshold current is about 33 mA, the operation current and the slope efficiency at 100 mW are 120 mA and 0.9 mW/mA, respectively. The lasing wavelength is 658.4 nm at room-temperature 50 mW. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A 1.55-mu m ridge distributed feedback laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter (SSC) at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum-well intermixing, and dual-core technologies. These devices exhibit threshold current of 28 mA, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0-dB dc. The output beam divergence angles of the SSC in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2-dB coupling loss with a cleaved single-mode optical fiber.
Resumo:
An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.
Resumo:
Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.
Resumo:
Various high-speed laser modules are fabricated by TO-Packaged processes, such as FP laser modules, DFB laser modules, and VCSEL modules. Furthermore,, the resonance among the circuit elements provides an approach to compensating the TO packaging parasitics, and improving the frequency response of the devices. The detailed equivalent circuit model is established to investigate both the laser diode and packaging comprehensively. The small-signal modulation bandwidths of the TO packaged FP laser, DFB laser and the VCSEL modules are more than 10, 9.7 and 8 GHz, respectively.
Resumo:
High performance InGaAsP/InGaAsP strained compensated multiple-quantum-well (MQW) electroabsorption modulators (EAM) monolithically integrated with a DFB laser diode have been designed and realized by ultra low metal-organic vapor phase epitaxy (MOVPE) based on a novel butt joint scheme. The optimization thickness of upper SCH layer for DFB and EAM was obtained of the proposed MQW structure of the EAM through numerical simulation and experiment. The device containing 250(mu m) DFB and 170(mu m) EAM shows good material quality and exhibits a threshold current of 17mA, an extinction ratio of higher than 30 dB and a very high modulation efficiency (12dB/V) from 0V to 1V. By adopting a high-mesa ridge waveguide and buried polyimide, the capacitance of the modulator is reduced to about 0.30 pF corresponding to a 3dB bandwidth more than 20GHz.
Resumo:
An ultra-wide-band frequency response measurement system for optoelectronic devices has been established using the optical heterodyne method utilizing a tunable laser and a wavelenath-fixed distributed feedback laser. By controlling the laser diode cavity length, the beat frequency is swept from DC to hundreds GHz. An outstanding advantage is that this measurement system does not need any high-speed light modulation source and additional calibration. In this measurement, two types of different O/E receivers have been tested. and 3 dB bandwidths measured by this system were 14.4GHz and 40GHz, respectively. The comparisons between experimental data and that from manufacturer show that this method is accurate and easy to carry out.
Resumo:
A 1.55-mu m ridge DFB laser and electroabsorption modulator monolithically integrated with a buried-ridge-stripe dual-waveguide spot-size converter at the output port for low-loss coupling to a cleaved single-mode optical fiber was fabricated by means of selective area growth, quantum well intermixing and dual-core technologies. These devices exhibit threshold current of 28 mA, side mode suppression ratio of 38.0 dB, 3-dB modulation bandwidth of 12.0 GHz, modulator extinction ratios of 25.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 8.0 degrees x 12.6 degrees, respectively, resulting in 3.2 dB coupling loss with a cleaved single-mode optical fiber.