108 resultados para ER-2O-3
Resumo:
We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108 ps width and 4.98 dB ER.
Resumo:
Er-doped silicon-rich silicon nitride (SRN) films were deposited on silicon substrate by an RF magnetron reaction sputtering system. After high temperature annealing, the films show intense photoluminescence in both the visible and infrared regions. Besides broad-band luminescence centered at 780 nm which originates from silicon nanocrystals, resolved peaks due to transitions from all high energy levels up to ~2H_(11/2) to the ground state of Er~(3+) are observed. Raman spectra and HRTEM measurements have been performed to investigate the structure of the films, and possible excitation processes are discussed.
Resumo:
利用Raman散射谱研究了GaN注Er以及Er+O共注样品的振动模,并讨论了共注入O对Er离子发光的影响. 在Raman散射谱中,对于注Er的GaN样品出现了300 cm~(-1)和670 cm~(-1)两个新的Raman峰,而对于Er+O共注样品,除了上述两个峰外,在360 cm~(-1)处出现了另外一个新的峰,其中300 cm~(-1)峰可以用disorder-activated Raman scattering (DARS)来解释,670 cm~(-1)峰是由于与N空位相关的缺陷引起的,而360 cm~(-1)峰是由O注入引起的缺陷络合物产生的. 由于360 cm~(-1)模的缺陷出现,从而导致Er+O共注入GaN薄膜红外光致发光(PL)强度的下降
Resumo:
利用深能级瞬态谱(DLTS)、傅里叶变换红外光谱(FT-IR)对GaN以及GaN掺Er/Pr的样品进行了电学和光学特性分析.研究发现未掺杂的GaN样品只在导带下0.270eV处有一个深能级;GaN注入Er经900℃,30min退火后的样品出现了四个深能级,能级位置位于导带下0.300eV,0.188eV,0.600eV和0.410eV;GaN注入Pr经1050℃,30min退火后的样品同样出现了四个深能级。能级位置位于导带下0.280eV,0.190eV,0.610eV和0.390eV;对每一个深能级的来源进行了讨论.光谱研究表明,掺Er的GaN样品经900℃,30min退火后,可以观察到Er的1538nm处的发光。而且对能量输运和发光过程进行了讨论.
Resumo:
用溶胶-凝胶方法合成了掺铒(掺杂浓度10~20/cm~3)的二氧化硅玻璃。在室温下可产生1.45μm波长的红外荧光。实验结果表明
Resumo:
分别在InP、GaAs和Si中以7×10<′14>和1×10<′15>cm<′-2>的剂量进行Er离子注入, 并采用闭管、快速和炉退火等热处理。低温光致发光(PL)、反射式高等电子衍射和卢瑟福背散射实验研究表明, 上述样品中Er<′3+>离子特征发光的中心波长均出现在1.5μm处, 其中InP的发光峰最强, 而注入损伤的恢复是影响Er<′3+>发光的重要因素之一。卢瑟福背散射分析进一步证实退火后Er原子在Si中向表面迁移, 而在InP中的外扩散较小, 并比较了Er在InP和Si晶格中的占位情况。图7参12
Resumo:
In this study, we report the dependences of infrared luminescence properties of Er-implanted GaN thin films (GaN:Er) on the kinds of substrates used to grow GaN, the growth techniques of GaN, the implantation parameters and annealing procedures. The experimental results showed that the photoluminescence (PL) intensity at 1.54 mum was severely influenced by different kinds of substrates. The integrated PL peak intensity from GaN:Er /Al2O3 (00001) was three and five times stronger than that from GaN:Er /Si (111) grown by molecular beam epitaxy (MBE) and by metalorganic chemical vapor deposition (MOCVD), respectively. The PL spectra observed from GaN:Er/Al2O3 (0001) grown by MOCVD and by MBE displayed a similar feature, but those samples grown by MOCVD exhibited a stronger 1.54 mum PL. It was also found that there was a strong correlation between the PL intensity with ion implantation parameters and annealing procedures. Ion implantation induced damage in host material could be only partly recovered by an appropriate annealing temperature procedure. The thermal quenching of PL from 15 to 300 K was also estimated. In comparison with the integrated PL intensity at 15 K, it is reduced by only about 30 % when going up to 300 K for GaN:Er/Al2O3 sample grown by MOCVD. Our results also show that the strongest PL intensity comes from GaN:Er grown on Al2O3 substrate by MOCVD. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The beta-delayed proton decays of Er-145,Er-147 have been studied experimentally using the Ni-58 + Mo-92 reaction at beam energy of 383 MeV. On the basis of a He-jet apparatus coupled with a tape transport system, the beta-delayed proton radioactivities both from the nu s(1/2) ground state and the nu h(11/2) isomer in Er-145,Er-147 were observed by proton-gamma coincidence measurements. By analyzing the time distributions of the 4(+) -> 2(gamma)(+) transitions in the granddaughter nuclei Dy-144,Dy-146, the half-lives of 1.0 +/- 0.3 s and 1.6 +/- 0.2 s have been deduced for the nu h(11/2) isomers in Er-145,Er-147, respectively.
Resumo:
The beta-delayed proton decay of Er-147 is studied experimentally using the Ni-58+Mo-92 reaction at a beam energy of 383 MeV. Based on a He-jet apparatus coupled with a tape transport system, the beta-delayed proton radioactivities both from the nu s(1/2) ground state and the nu h(11/2) isomer in Er-147 are identified by proton-gamma coincidence measurements. By analyzing the time distribution of the 4(+) -> 2(+) gamma transition in the grand-daughter nucleus Dy-146, a half-life of 1.6 +/- 0.2 s is determined for the nu h(11/2) isomer in Er-147. The half-life for the ground state of Er-147 is estimated to be 3.2 +/- 1.2 s.
Resumo:
The Mg-8Gd-0.6Zr-xEr (x = 1, 3 and 5 mass%) alloys were prepared by casting technology, and the microstructures, age hardening behaviors and mechanical properties of alloys have been investigated. Microstructures of the alloys are characterized by the presence of rosette-shaped equiaxed grains. The age hardening behaviors and the tensile properties are enhanced by adding Er element. The maximum aged hardness of Mg-8Gd-0.6Zr-5Er alloy is 97, it is nearly 1.24 times higher than that of Er-free alloy.
Resumo:
A series of novel, colorless, and transparent sot-gel derived hybrid materials Ln-DBM-Si covalently grafted with Ln(DBM-OH)(3)center dot 2H(2)O (where DBM-OH = o-hydroxydibenzoylmethane, Ln = Nd, Er, Yb, and Sin) were prepared through the primary beta-diketone ligand DBM-OH. The structures and optical properties of Ln-DBM-Si were studied in detail. The investigation results revealed that the lanthanide complexes were successfully in situ grafted into the corresponding hybrids Ln-DBM-Si. Upon excitation at the maximum absorption of ligands, the resultant materials displayed excellent near-infrared luminescence.
Resumo:
A beta-diketone ligand 4,4,5,5,5-pentafluoro-1-(2-naphthyl)-1,3-butanedione (Hpfnp), which contains a pentafluoroalkyl chain, was synthesized as the main sensitizer for synthesizing new near-infrared (NIR) luminescent Ln(pfnp)(3)phen (phen = 1,10-phenanthroline) (Ln = Er, Nd, Yb, Sm) complexes. At the same time, a series of lanthanide complexes covalently bonded to xerogels by the ligand 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline (phen-Si) were synthesized in situ via a sol-gel process. [The obtained materials are denoted as xerogel-bonded Ln complexes (Ln = Er, Nd, Yb, Sm).] The single crystal structures of the Ln(pfnp) 3phen complexes were determined.
Resumo:
Deprotonation of (ArNHPPh2NAr2)-N-1 (H[NPN](n), n = 1 - 10) by Ln(CH2SiMe3)(3)(THF)(2) (Ln = Lu, Y, Sc, Er) generated a series of rare-earth metal bis(alkyl) complexes [NPN](n)Ln(CH2SiMe3)(2)(THF)(2) (1-10), which under activation with [Ph3C][B(C6F5)(4)] and AliBu(3) were tested for isoprene polymerization. The correlation between catalytic performances and molecular structures of the complexes has been investigated. Complexes 1-5 and 8, where Ar-1 is nonsubstituted or ortho-alkyl-substituted phenyl, adopt trigonal-bipyramidal geometry. The Ar-1 and Ar-2 rings are perpendicular in 1-4 and 8 but parallel in 5. When Ar-1 is pyridyl, the resultant lutetium and yttrium complexes 9a and 9b adopt tetragonal geometry with the ligand coordinating to the metal ions in a N,N,N-tridentate mode, whereas in the scandium analogue 9c, the ligand coordinates to the Sc3+ ion in a N,N-bidentate mode. These structural characteristics endow the complexes with versatile catalytic performances, With increase of the steric bulkiness of the ortho-substituents Ar-1 and Ar-2, the 3,4-selectivity increased stepwise from 81.6% for lutetium complex 1 to 96.8% for lutetium complex 6 and to 97.8% for lutetium complex 7a. However, further increase of the steric bulk of the ligand led to a slight drop of 3,4-selectivity for the attached complex 5 (95.1%).
Resumo:
New near-infrared-luminescent mesoporous materials were prepared by linking ternary lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) complexes to the ordered mesoporous MCM-41 through a functionalized 1,10-phenanthroline (phen) group 5-(N,N-bis-3-(triethoxysilyl)propyl)ureyl-1,10-phenanthroline. The resulting materials (denoted as Ln(hfth)(3)phen-M41 and Pr(tfnb)(3)phen-M41; Ln=Er, Yb, Nd, Sm; hfth = 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)hexane-1,3-dionate; tfnb = 4,4,4-trifluoro-1-(2-naphthyl)- 1, 3-butanedionate) were characterized by powder X-ray diffraction, N-2 adsorption/desorption, and elemental analysis. Luminescence spectra of these lanthanide-complex functionalized materials were recorded, and the luminescence decay times were measured. Upon excitation at the absorption of the organic ligands, all these materials show the characteristic NIR luminescence of the corresponding lanthanide (Er3+, Nd3+, Yb3+, Sm3+, Pr3+) ions by sensitization from the organic ligands moiety. The good luminescent performances enable these NIR-luminescent mesoporous materials to have possible applications in optical amplification (operating at 1300 or 1500 nm), laser systems, or medical diagnostics.
Resumo:
Reaction of anhydrous lanthanide trichlorides with tetrahydrofurfuryl indenyl lithium in THF afforded bis(tetrahydrofurfurylindenyl) lanthanocene chlorides complexes (C4H7OCH2C9H6)(2) LnCl, Ln = Nd (1), Sm (2), Dy (3), Ho (4), Er (5), Yb (6). The X-ray crystallographic structures of all the six complexes were determined and these indicate that they are unsolvated nine-coordinate monomeric complexes with a trans arrangement of both the sidearm and indenyl rings in the solid state. They belong to the same crystal system (orthorhombic) and space group (P2(1)2(1)2(1)) with the same structure. Especially, they are more stable to air and moisture than the corresponding unsubstituted indenyl lanthanide complexes.