257 resultados para CONICAL INTERFACE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

采用提拉法生长了掺Ce、掺Yb和掺Mn的铝酸钇(YAlO3,YAP)晶体,晶体均完整透明,无肉眼可见的气泡、散射和包裹物等宏观缺陷。通过化学腐蚀和同步辐射白光形貌实验检测了YAP晶体中的生长小面缺陷。结果表明:晶体生长过程中,由于凸向熔体的固-液界面,造成了小面生长现象。沿[101]方向生长的YAP晶体中出现的小面为(102),(201),(121)和(121)奇异面。X射线摇摆曲线表征的结果表明:生长小面的存在严重破坏了晶体的微观结构完整性和均匀性,并导致了小角度晶界缺陷的产生。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the interface absorption in optical coatings, we propose a model to simulate interface absorption. Calculations are made and the temperature field of several kinds of thin film multilayers, including those of partial reflectivity, high-reflectivity, and antireflectivity coatings are analyzed. The interface absorption is found to greatly influence the temperature distribution within multilayer coatings and to weaken the laser damage resistance of the samples. The real-time results of the photothermal deflection technique for laser induced damage to samples supports the model. (C) 1997 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesion between the interface of pure silver thin film and three kinds of low refractive index coatings MgF2, Al2O3, SiO2 were compared in this article. The results indicated that the adhesion of Al2O3 and Ag was evidently superior to that of MgF2 and Ag, and the adhesion of MgF2 and Ag was evidently superior to that Of SiO2 and Ag. Reasons were analyzed accordingly. On the other hand, we compared the effect on the optical characteristic of Ag film when these three kinds of films were used as protective coatings and enhanced coatings. Considering the difference of the adhesion between Ag and MgF2, Al2O3, SiO2, suited uses are given for each other. © 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature fields of 355 nm high-reflectance (HR) coatings were investigated based on the interface absorption model. It was found that the highest temperature in the HR coatings increased with an increase in the extinction coefficient of the interface A, B, C, Al2O3 and MgF2. The highest temperature of HR coatings that can be reached increased quickly with the increase in the extinction coefficient of interface A in particular. The temperature rises of 355 nm HR coatings at different layers and different deposition temperatures were investigated based on experiments also. The damage mechanism of 355 nm HR coatings was confirmed with temperature fields and the interface absorption model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blooms of cyanobacteria, or blue-greens, are known to produce chemicals, such as microcystins, which can be toxic to aquatic and terrestrial organisms. Although previous studies have examined the fate of microcystins in freshwater lakes, primary elimination pathways and factors affecting degradation and loss have not been fully explained. The goal of the present study was to explore sources of algal toxins and investigate the distribution and biodegradation of microcystins in water and sediment through laboratory and field analyses. Water and sediment samples were collected monthly from several locations in Lake Taihu from February 2005 to January 2006. Samples were analyzed for the presence of microcystin. Water and sediment were also used in laboratory studies to determine microcystin degradation rates by spiking environmental samples with known concentrations of the chemical and observing concentration changes over time. Some water samples were found to efficiently degrade microcystins. Microcystin concentrations dropped faster in water collected immediately above lake sediment (overlying water). Degradation in sediments was higher than in water. Based on spatial distribution analyses of microcystin in Lake Taihu, higher concentrations (relative to water concentrations) of the chemical were found in lake sediments. These data suggest that sediments play a critical role in microcystin degradation in aquatic systems. The relatively low levels of microcystins found in the environment are most likely due to bacterial biodegradation. Sediments play a crucial role as a source (to the water column) of bio-degrading bacteria and as a carbon-rich environment for bacteria to proliferate and metabolize microcystin and other biogenic toxins produced by cyanobacteria. These, and other, data provide important information that may be applied to management strategies for improvement of water quality in lakes, reservoirs and other water bodies. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of interface roughness and dislocation density on the electroluminescence (EL) intensity of InGaN multiple quantum wells (MQWs) are investigated. It is found that the EL intensity increases with the number of satellite peaks in the x-ray diffraction experiments of InGaN MQW samples. It is indicated that the rough interface will lead the reduction of EL intensity of InGaN MQW samples. It is also found that the EL intensity increases with the decrease of dislocation density which is characterized by the x-ray diffraction measurements. It is suggested that the EL intensity of InGaN MQWs can be improved by decreasing the interface roughness and dislocation density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the surface morphology of Ag on the surface-plasmon-enhanced emission of ZnO films have been studied for a ZnO/Ag/Si system by photoluminescence spectroscopy and atomic force microscopy. The results indicate that the enhancement of ZnO ultraviolet emission is dependent on the deposition conditions of the Ag interlayers. By examining the dependence of the enhancement ratio of surface-plasmon-mediated emission on the characteristic parameters of Ag surface morphology, we found that the surface plasmon coupling to light is determined by both the Ag particle size and density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the magnetic properties of Co-doped zinc oxide (ZnO) film deposited on silicon substrate by magnetron sputtering. Co ions have a valence of 2+ and substitute for Zn sites in the lattice. By using a chemical etching method, an extrinsic ferromagnetism was demonstrated. The observed ferromagnetism is neither associated with magnetic precipitates nor with contamination, but originates from the silicon/silicon oxide interface. This interface ferromagnetism is characterized by being temperature independent and by having a parallel magnetic anisotropy. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989128]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the effective absorption coefficient of bonded interface and the relationship of interface to reflectivity at cavity mode for double bonded vertical cavity laser, it can be seen that bonded interfaces should be positioned at the null of standing wave distribution, and the thickness of interface should be less than 20 nm. Using the finite elements method, the temperature contour map of laser can be calculated. Results showed that the influence of thin interface to thermal characteristics of VCSELS is slight, while thick interface will lead to temperature increase of active region. SEM images demonstrate that hydrophobic bonding is suitable for the fabrication of the device, while hydrophilic bonding interface is unfavorable to optical and thermal properties of devices with interface thickness larger than 40 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin SiO2 interlayer is the key to improving the electroluminescence characteristics of light emitting diodes based on ZnO heterojunctions, but little is known of the band offsets of SiO2/ZnO. In this letter, energy band alignment of SiO2/ZnO interface was determined by x-ray photoelectron spectroscopy. The valence band offset Delta E-V of SiO2/ZnO interface is determined to be 0.93 +/- 0.15 eV. According to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V Delta E-C=E-g(SiO2)-E-g(ZnO)-Delta E-V, and taking the room-temperature band-gaps of 9.0 and 3.37 eV for SiO2 and ZnO, respectively, a type-I band-energy alignment of SiO2/ZnO interface with a conduction band offset of 4.70 +/- 0.15 eV is found. The accurate determination of energy band alignment of SiO2/ZnO is helpful for designing of SiO2/ZnO hybrid devices and is also important for understanding their carrier transport properties. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3204028]