187 resultados para Actinocythereis cf. scutigera
Resumo:
Using photoemission spectroscopy and Auger electron spectroscopy, the interfacial formation process and the reactions between Al and hydrogenated amorphous Si are probed, and annealing behaviors of the Al/a-Si:H system are investigated as well. It is found that a three-dimensional growth of Al metal clusters which includes reacted Al and non-reacted metal Al occurs at the initial Al deposition time, reacted Al and Si alloyed layers exist in the Al/a-Si:H interface, and non-reacted Al makes layer-by-layer growth forming a metal Al layer on the sample surface. The interfacial reactions and element interdiffusion of Al/a-Si:H are promoted under the vacuum annealing.
Resumo:
The reduction of exciton binding energy induced by a perpendicular electric field in a stepped quantum well is studied. From continuous-wave photoluminescence spectra at 77 K we have observed an obvious blueshift of the exciton peak due to a spatially direct-to-indirect transition of excitons. A simple method is used to calculate the exciton binding energy while the inhomogeneous broadening is taken into account in a simple manner. The calculated result reproduces remarkably well the experimental observation.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
Charge build-up process in the emitter of a double-barrier resonant tunneling structure is studied by using photoluminescence spectroscopy. Clear evidence is obtained that the charge accumulation in the emitter keeps almost constant with bias voltages in the resonant regime, while it increases remarkably with bias voltages beyond resonant regime. The optical results are in good agreement with the electrical measurement. It is demonstrated that the band gap renormalization plays a certain rob in the experiment.
Resumo:
Quantum interference properties of GaAs/AlGaAs symmetric double quantum wells were investigated in a magnetic field parallel to heterointerfaces at 1.9 K. For two types of samples used in our experiments, two GaAs quantum wells with the same width of 60 Angstrom are separated by an AlGaAs barrier layer of 120 Angstrom and 20 degrees thick, respectively. The channels with the length of 2 mu m are defined by alloyed ohmic contacts. The conductance oscillation as a function of the magnetic flux Phi(= B/s) was observed and oscillation period is approximately equal to h/e. The results are in agreement with the theoretical expectation of the Aharonov-Bohm effect. Conductance oscillations are apparent slightly in the samples with a thinner AlGaAs barrier.
Resumo:
GaAs/AlGaAs quantum dot arrays with different dot sizes made by different fabrication processes were studied in this work. In comparison with the reference quantum well, photoluminescence (PL) spectra from the samples at low temperature have demonstrated that PL peak positions shift to higher energy side due to quantization confinement effects and the blue-shift increases with decreasing dot size, PL linewidths are broadened and intensities are much reduced. It is also found that wet chemical etching after reactive ion etching can improve optical properties of the quantum dot arrays.
Spatial Estimation of Soil Total Nitrogen Using Cokriging with Predicted Soil Organic Matter Content