140 resultados para valence bands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An LCAO-scheme taking into account 10 atomic orbitals (s-, p-, and d-type) is used to calculate the electronic structure of the reconstructed 90-degrees partial dislocation in Si. Two different valence force fields producing deviating results are used for modelling the core structure. Geometrical data published by another group is also used. The aim is to explore the influence of geometry on energy levels. We find that the band structure depends sensitively on bond angles. Using data determined by the Tersoff potential we obtain two bands of which the upper one penetrates deeply into the indirect band gap while the geometry minimizing the simple Keating potential leaves the gap completely clear of dislocation states. Thus, from a theoretical point of view, the chief difficulty in calculating the electronic structure of the reconstructed 90-degrees partial is the lack of accurate structural information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that Li diffusion of GaAs can give rise to semi-insulating samples with electrical resistivity as high as 10(7) OMEGAcm in undoped, n-type, and p-type starting materials. The optical properties of the compensated samples are correlated with the depletion of free carriers caused by the Li diffusion. The radiative recombination of the Li-compensated samples is dominated by emissions with excitation-dependent peak positions that shift to lower energies with increasing compensation. The photoluminescence properties are characteristic of fluctuations of the electrostatic potential in strongly doped, compensated crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energetics, lattice relaxation, and the defect-induced states of st single O vacancy in alpha-Al2O3 are studied by means of supercell total-energy calculations using a first-principles method based on density-functional theory. The supercell model with 120 atoms in a hexagonal lattice is sufficiently large to give realistic results for an isolated single vacancy (square). Self-consistent calculations are performed for each assumed configuration of lattice relaxation involving the nearest-neighbor Al atoms and the next-nearest-neighbor O atoms of the vacancy site. Total-energy data thus accumulated are used to construct an energy hypersurface. A theoretical zero-temperature vacancy formation energy of 5.83 eV is obtained. Our results show a large relaxation of Al (O) atoms away from the vacancy site by about 16% (8%) of the original Al-square (O-square) distances. The relaxation of the neighboring Al atoms has a much weaker energy dependence than the O atoms. The O vacancy introduces a deep and doubly occupied defect level, or an F center in the gap, and three unoccupied defect levels near the conduction band edge, the positions of the latter are sensitive to the degree of relaxation. The defect state wave functions are found to be not so localized, but extend up to the boundary of the supercell. Defect-induced levels are also found in the valence-band region below the O 2s and the O 2p bands. Also investigated is the case of a singly occupied defect level (an F+ center). This is done by reducing both the total number of electrons in the supercell and the background positive charge by one electron in the self-consistent electronic structure calculations. The optical transitions between the occupied and excited states of the: F and F+ centers are also investigated and found to be anisotropic in agreement with optical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured low-temperature photoluminescence (PL) and optical absorption spectra of an In0.2Ga0.8As/GaAs multiple quantum well (MQW) structure at pressures up to 8 GPa. Below 4.9 GPa, PL shows only the emission of the n = 1 heavy-hole (HH) exciton. Three new X-related PL bands appear at higher pressures. They are assigned to spatially indirect (type-II) and direct (type-I) transitions from X(Z) states in GaAs and X(XY) valleys of InGaAs, respectively, to the HH subband of the wells. From the PL data we obtain a valence band offset of 80 meV for the strained In0.2Ga0.8As/GaAs MQW system. Absorption spectra show three features corresponding to direct exciton transitions in the quantum wells. In the pressure range of 4.5 to 5.5 GPa an additional pronounced feature is apparent in absorption, which is attributed to the pseudo-direct transition between a HH subband and the folded X(Z) states of the wells. This gives the first clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance at the heterointerfaces in MQWs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structures of the zinc-blende GaN/Ga0.85Al0.15N compressively strained superlattices and quantum wells are investigated using a 6 x 6 Hamiltonian model (including the heavy hole, light hole and spin-orbit splitting band). The energy bands, wavefunctions and optical transition matrix elements are calculated. It is found that the light hole couples with the spin-orbit splitting state even at the k=0 point, resulting in the hybrid states. The heavy hole remains a pure heavy hole state at k=0. The optical transitions from the hybrid valence states to the conduction states are determined by the transitions of the light hole and spin-orbit splitting states to the conduction states. The transitions from the heavy hole, light hole and spin-orbit splitting states to the conduction states obey the selection rule Delta n=0. The band structures obtained in this work will be valuable in designing GaN/GaAlN based optoelectronic devices. (C) 1996 Academic Press Limited

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The valence subband energies and wave functions of a tensile strained quantum well are calculated by the plane wave expansion method within the 6 * 6 Luttinger-Kohn model. The effect of the number and period of plane-waves used for expansion on the stability of energy eigenvalues is examined. For practical calculation, it should choose the period large sufficiently to ensure the envelope functions vanish at the boundary and the number of plane waves large enough to ensure the energy eigenvalues keep unchanged within a prescribed range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The different resonant Raman scattering process of single-walled carbon nanotubes (SWNTs) has been found between the Stokes and anti-Stokes sides of the radial breathing modes (RBMs), and this provides strong evidence that Raman spectra of some special diametric SWNTs are in resonance with their electronic transitions between the singularities in the one-dimensional electronic density of states in the valence and conduction bands, and other SWNTs axe beyond the resonant condition. Because of the coexistence of resonant and non-resonant Raman scattering processes for different diametric SWNTs, the relative intensity of each RBM does not reflect the proportion of a particular SWNT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formations of the surface plasmonpolariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was supported by the 863 High Technology R&D Program of China (Grant Nos. 2007AA03Z402 and 2007AA03Z451), the Special Funds for Major State Basic Research Project (973 program) of China (Grant No. 2006CB604907), and the National Science Foundation of China (Grant Nos. 60506002 and 60776015). The authors express their appreciation to Dr. Tieying Yang and Prof. Huanhua Wang (Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences) for XRD measurements and helpful discussions.