191 resultados para p-type conductivity
Resumo:
Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO2 (M=Sc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that Be-Cu is the most prominent extrinsic donor and Ca-M is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuSCO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO2 (M=SC, y). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Native point defects in the rutile TiO2 are studied via first-principles pseudopotential calculations. Except for the two antisite defects, all the native point defects have low formation energies. Under the Ti-rich growth condition, high concentrations of titanium interstitials and oxygen vacancies would form spontaneously in p-type samples; whereas high concentrations of titanium vacancies would form spontaneously in n-type samples regardless of the oxygen partial pressure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Our Raman measurement indicates that the intensity of the peaks (510 and 645 cm(-1)) related to nitrogen concentration is enhanced in MgZnO compared with that in ZnO. Using first-principles band structure methods, we calculated the formation energy and transition energy level for nitrogen acceptor in ZnO and random MgxZn1-xO (with x=0.25) alloy. Our calculations show that the incorporation of nitrogen can be enhanced as Mg is alloyed into ZnO, which agrees with our experiments. The acceptor energy level deeper in the alloy ascribes to the downward shift of the valence-band maximum edge in the presence of magnesium. (c) 2008 American Institute of Physics.
Resumo:
Highly c-axis oriented ZnO thin films were deposited on Si substrates by the pulsed laser deposition (PLD) method. At different growth temperatures, 200 nm silver films as the contact metal were deposited on the ZnO thin films. The growth temperatures have great influence on the crystal quality of Ag films. Current-voltage characteristics were measured at room temperature. The Schottky contacts between Ag and ZnO thin films were successfully obtained when silver electrodes were deposited at 150A degrees C and 200A degrees C. Ohmic contacts were formed while the growth temperatures were lower than 150A degrees C or higher than 200A degrees C. After analysis, the forming of Ag/ZnO Schottky contacts was shown to be dependent on the appearance of the p-type inversion layer at the interface between Ag and ZnO layers.
Resumo:
We report an effective and nondestructive method based on circular photogalvanic effect (CPGE) to detect the lattice polarity of InN. Because of the lattice inversion between In- and N-polar InN, the energy band spin splitting is opposite for InN films with different polarities. Consequently under light irradiation with the same helicity, CPGE photocurrents in In- and N-polar layers will have opposite directions, thus the polarity can be detected. This method is demonstrated by our CPGE measurements in both n- and p-type InN films.
Resumo:
By employing first-principle total-energy calculations, a systematic study of the dopability of ZnS to be both n- and p-types compared with that of ZnO is carried out. We find that all the attempted acceptor dopants, group V substituting on the S lattice site and group I and IB on the Zn sites in ZnS, have lower ionization energies than the corresponding ones in ZnO. This can be accounted for by the fact that ZnS has relative higher valence band maximum than ZnO. Native ZnS is weak p-type under S-rich condition, as the abundant acceptor V-Zn has rather large ionization energy. Self-compensations by the formation of interstitial donors in group I and IB-doped p-type ZnS can be avoided when sample is prepared under S-rich condition. In terms of ionization energies, Li-Zn and N-S are the preferred acceptors in ZnS. Native n- type doping of ZnS is limited by the spontaneous formation of intrinsic V-Zn(2-); high efficient n-type doping with dopants is harder to achieve than in ZnO because of the readiness of forming native compensating centers and higher ionization energy of donors in ZnS. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3103585]
Resumo:
Diluted magnetic nonpolar GaN Mn films have been fabricated by implanting Mn ions into nonpolar aplane (1 1 (2) over bar 0) p-type GaN films and a subsequent rapid thermal annealing process. The ferromagnetism properties of the films were studied by means of superconducting quantum interference device (SQUID). Clearly in-plane magnetic anisotropy characteristics of the sample at 10 K were revealed with the direction of the applied magnetic field rotating along the in-plane [0 0 0 1]-axis. Moreover, obvious ferromagnetic properties of the sample up to 350 K were detected by means of the temperature-dependent SQUID. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.
Resumo:
Diluted-magnetic nonpolar GaN:Cu films have been fabricated by implanting Cu ions into p-type nonpolar a-plane (1120) GaN films with a subsequent thermal annealing process. The impact of the implantation dose on the structural. morphological and magnetic characteristics of the samples have been investigated by means of high-resolution X-ray diffraction (HRXRD). atomic force microscopy (AFM), and superconducting quantum interference device (SQUID). The XRD and AFM analyses show that the structural and morphological characteristics of samples deteriorated with the increase of implantation dose. According to the SQUID analysis. obvious room-temperature ferromagnetic properties of samples were detected. Moreover, the saturation magnetization per Cu atom decreased as the implantation dose increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Undoped Ga-Sb samples were investigated by positron lifetime spectroscopy (PAS) and the coincident Doppler broadening (CDB) technique. PAS measurement indicated that there were monovacancy-type defects in undoped Ga-Sb samples, which were identified to be predominantly Ca vacancy (V-Ga) related defects by combining the CDB measurements. After annealing of these samples at 520 C, positron shallow trapping have been observed and should be due to Ga-Sb defects. Undoped Ga-Sb is intrinsically p-type having a residual carrier density of 10(16)-10(17) cm(-3). And the Ga-Sb antisite defects are stable in the (0), (1-) and (2-) charge states and act as a double acceptor. Thus, we infer that Ga-Sb antisite defects are the acceptor contributing to the p-type conduction for undoped samples. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
InGaN/GaN multiquantum-well (MQW) structures grown by metalorganic chemical-vapor deposition on n-type GaN and capped by p-type GaN were investigated by cross-sectional transmission electron microscopy, double crystal x-ray diffraction, and temperature-dependent photoluminescence. For the sample with strained-layer thicknesses greater than the critical thicknesses, a high density of pure edge type threading dislocations generated from MQW layers and extended to the cap layer was observed. These dislocations result from a relaxation of the strained layers when their thicknesses are beyond the critical thicknesses. Because of indium outdiffusion from the well layers due to the anneal effect of Mg-doped cap layer growth and defects generated from strain relaxation, the PL emission peak was almost depressed by the broad yellow band with an intensity maximum at 2.28 eV. But for the sample with strained-layer thicknesses less than the critical thicknesses, it has no such phenomenon. The measured critical thicknesses are consistent with the calculated values using the model proposed by Fischer, Kuhne, and Richter. (C) 2004 American Institute of Physics.
Resumo:
Doping of magnetic element Mn and Cr in GaN was achieved by thermal diffusion. The conductivity of the samples, which were all n-type, did not change significantly after the diffusion doping. X-ray diffraction measurements revealed no secondary phase in the samples. Experiments using superconducting quantum interference device (SQUID) showed that the samples were ferromagnetic at 5 and 300 K, implying the Curie temperature to be around or over 300 K, despite their n-type conductivity. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We compared two reflection-mode negative electron affinity (NEA) GaAs photocathode samples that are grown by molecular beam epitaxy with p-type beryllium doping. One sample is uniform doping, and another is gradient doping. Experimental curves of spectral response sensitivity and quantum efficiency are obtained. The thicknesses of the two cathodes are both 2.6 mu m. The integrated sensitivity of the uniform doping one is 1966 mu A/lm, and that of the gradient-doping one is 2421 mu A/lm. The escape probability and diffusion length are fitted from the spectral response curves. For the uniform-doping sample, the escape probability is 0.45 and the diffusion length is 5 mu m. For the gradient-doping sample, the escape probability is 0.55 and the diffusion length is 5.5 mu m. (c) 2007 Optical Society of America.
Resumo:
Using the first-principles band-structure method and the special quasirandom structures approach, the authors have investigated the band structure of random AlxInyGa1-x-yN quaternary alloys. They show that the wave functions of the band edge states are more localized on the InN sites. Consequently, the photoluminescence transition intensity in the alloy is higher than that in GaN. The valence band maximum state of the quaternary alloy is also higher than GaN with the same band gap, indicating that the alloy can be doped more easily as p-type. (c) 2007 American Institute of Physics.