199 resultados para WS-BPEL
Resumo:
UV-blue light was obtained from a thin-film electroluminescence device using Gd3Ga5O12:Ag as a light-emitting layer, which was deposited by using electron-beam evaporation. The crystal composition and structure of Gd3Ga5O12:Ag were studied by x-ray powder diffraction, The Gd3Ga5O12:Ag has a photoluminescence emission which peaked at around 397 and 467 nm, which were attributed to the oxide vacancies and Ag+, respectively. The brightness of 32 cd/m(2) was obtained when an alternating voltage of 130 V at 1 kHz was applied. (C) 2000 American Institute of Physics. [S0003-6951(00)05031-2].
Resumo:
High homoepitaxial growth of 4H-SiC has been performed in a home-made horizontal hot wall CVD reactor on n-type 4H-SiC 8 degrees off-oriented substrates in the size of 10 mm x 10 mm, using trichlorosilane (TCS) as silicon precursor source together with ethylene as carbon precursor source. Cross-section Scanning Electron Microscopy (SEM), Raman scattering spectroscopy and Atomic Force Microscopy (AFM) were used to determine the growth rate, structural property and surface morphology, respectively. The growth rate reached to 23 mu m/h and the optimal epilayer was obtained at 1600 degrees C with TCS flow rate of 12 seem in C/Si of 0.42, which has a good surface morphology with a low Rms of 0.64 nm in 10 mu mx10 mu m area.
Resumo:
In this paper, the SiC-based clamped-clamped filter was designed and fabricated. The filter was composed of two clamped-clamped beam micromechanical resonators coupled by a spring coupling beam. Structural geometries, including the length and width of the resonator beam and coupling beam, were optimized by simulation for high frequency and high Q, under the material properties of SiC. The vibrating modes for the designed filter structure were analyzed by finite element analysis (FEA) method. For the optimized structure, the geometries of resonator beams and coupling beams, as well as the coupling position, the SiC-based clamped-clamped filter was fabricated by surface micromaching technology.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
Using AlN as a buffer layer, 3C-SiC film has been grown on Si substrate by low pressure chemical vapor deposition (LPCVD). Firstly growth of AlN thin films on Si substrates under varied V/III ratios at 1100 degrees was investigated and the (002) preferred orientational growth with good crystallinity was obtained at the V/III ratio of 10000. Annealing at 1300 degrees C indicated the surface morphology and crystallinity stability of AlN film. Secondly the 3C-SiC film was grown on Si substrate with AlN buffer layer. Compared to that without AlN buffer layer, the crystal quality of the 3C-SiC film was improved on the AlN/Si substrate, characterized by X-ray diffraction (XRD) and Raman measurements.
Resumo:
Vertical PIN ultraviolet photodetectors based on 4H-SiC homoepilayers are presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetector was 300 x 300 mu m(2). The dark and illuminated I-V characteristics were measured at reverse biases from 0 V to 30 V at room temperature. The illuminated current was at least two orders of magnitude higher than the dark current at a bias of below 12 V. The photoresponse was measured from 200 nm to 400 nm at different reverse biases and the peak values of the photo response were located at 3 10 nm. The calculated spectral detectivity D* was shown to be higher than 10(13) cmHz(1/2)/W from 260 to 360 nm with a peak value of 5.9 x 10(13) cmHz(1/2) /W at 310 nm. The peak value of the photoresponse was hundreds of times higher than the response at 400 nm, which showed the device had good visible blind performance. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Homoepitaxial growth of 4H-SiC p(+)/pi/n(-) multi-epilayer on n(+) substrate and in-situ doping of p(+) and pi-epilayer have been achieved in the LPCVD system with SiH4+C2H4+H-2. The surface morphologies, homogeneities and doping concentrations of the n(-)-single-epilayers and the p(+)/pi/n(-) multi-epilayers were investigated by Nomarski, AFM, Raman and SIMS, respectively. AFM and Raman investigation showed that both single- and,multi-epilayers have good surface morphologies and homogeneities, and the SIMS analyses indicated the boron concentration in p+ layer was at least 100 times higher than that in pi layer. The UV photodetectors fabricated on 4H-SiC p(+)/pi/n(-) multi-epilayers showed low dark current and high detectivity in the UV range.
Resumo:
Three types of defects, namely defect I, defect 11, defect 111, in the 4H-SiC homoepilayer were investigated by micro-raman scattering measurement. These defects all originate from a certain core and are composed of (1) a wavy tail region, (11) two long tails, the so called comet and (111) three plaits. It was found that there are 3C-SiC inclusions in the cores of defect 11 and defect III and the shape of inclusion determines the type of defect II or defect III. If the core contains a triangle-shaped inclusion, the defect III would be formed; otherwise, the defect 11 was formed. No inclusion was observed in the core of the defect I. The mechanisms of these defects are discussed.
Resumo:
Hexagonal GaN films (similar to 3 mu m) were grown on 3c-SiC/Si(111) and carbonized Si(111) substrates using a thick AlN buffer Cracks are observed on the surface of the GaN film grown on the carbonized Si(111), while no cracks are visible on the 3c-SiC/Si(111). XRD exhibits polycrystalline nature of the GaN film grown on the carbonized Si(111) due to poorer crystalline quality of this substrate. Raman spectra reveal that all GaN layers are under tensile stress, and the GaN layer grown on 3c-SiC/Si(111) shows a very low stress value of sigma(xx) = 0.65 Gpa. In low-temperature Photoluminescence spectra the remarkable donor-acceptor-pair recombination and yellow band can be attributed to the incorporation of Si impurities from the decomposition of SiC.
Resumo:
4H-SiC layers have been homoepitaxially grown at 1500 degrees C with the use of a horizontal hot-wall chemical vapor deposition (CVD) system, which was built in the author's group. The typical growth rate was 2 mu m/h at a pressure of 40 Torr. The background donor concentration has been reduced to 2.3 x 10(15) cm(-3) during a prolonged growth run. It confirmed the idea that the high background concentration of thin films was caused by the impurities inside the susceptor and thermal insulator The FWHM of x-ray co-rocking curves show 9 similar to 15 aresecs in five different areas of a 32-mu m-thick 4H-SiC epilayer The free exciton peaks dominated in the near-band-edge low-temperature photoluminescence spectrum (LTPL), indicating high crystal quality.
Resumo:
The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.
Resumo:
Epitaxial growth of semiconductor films in multiple-wafer mode is under vigorous development in order to improve yield output to meet the industry increasing demands. Here we report on results of the heteroepitaxial growth of multi-wafer 3C-SiC films on Si(100) substrates by employing a home-made horizontal hot wall low pressure chemical vapour deposition (HWLPCVD) system which was designed to be have a high-throughput, multi-wafer (3x2-inch) capacity. 3C-SiC film properties of the intra-wafer and the wafer-to-wafer including crystalline morphologies, structures and electronics are characterized systematically. The undoped and the moderate NH3 doped n-type 3C-SiC films with specular surface are grown in the HWLPCVD, thereafter uniformities of intra-wafer thickness and sheet resistance of the 3C-SiC films are obtained to be 6%similar to 7% and 6.7%similar to 8%, respectively, and within a run, the deviations of wafer-to-wafer thickness and sheet resistance are less than 1% and 0.8%, respectively.
Resumo:
Web services can be seen as a newly emerging research area for Service-oriented Computing and their implementation in Service-oriented Architectures. Web services are self-contained, self-describing modular applications or components providing services. Web services may be dynamically aggregated, composed, and enacted as Web services Workflows. This requires frameworks and interaction protocols for their co-ordination and transaction support. In a Service-oriented Computing setting, transactions are more complex, involve multiple parties (roles), span many organizations, and may be long-running, consisting of a highly decentralized service partner and performed by autonomous entities. A Service-oriented Transaction Model has to provide comprehensive support for long-running propositions including negotiations, conversations, commitments, contracts, tracking, payments, and exception handling. Current transaction models and mechanisms including their protocols and primitives do not sufficiently cater for quality-aware and long running transactions comprising loosely-coupled (federated) service partners and resources. Web services transactions require co-ordination behavior provided by a traditional transaction mechanism to control the operations and outcome of an application. Furthermore, Web services transactions require the capability to handle the co-ordination of processing outcomes or results from multiple services in a more flexible manner. This requires more relaxed forms of transactions—those that do not strictly have to abide by the ACID properties—such as loosely-coupled collaboration and workflows. Furthermore, there is a need to group Web services into applications that require some form of correlation, but do not necessarily require transactional behavior. The purpose of this paper is to provide a state-of-the-art review and overview of some proposed standards surrounding Web services composition, co-ordination, and transaction. In particular the Business Process Execution Language for Web services (BPEL4WS), its co-ordination, and transaction frameworks (WS-Co-ordination and WS-Transaction) are discussed.
Resumo:
随着新兴分布式应用场景的不断涌现和企业组织受业务驱动影响下的安全需求逐步升级,传统访问控制手段和理念在诸如域间策略互操作、大规模策略处理、策略分析检测、访问判定实施效率、安全软件形态及开发模式等领域面临一系列的问题与挑战。本文基于这一现实背景和众多在研相关课题,针对访问授权策略集成涉及的若干关键技术展开理论研究和工程实践工作,主要取得了以下几个方面的成果: 1、对近年来域间互操作策略集成理论和技术的整体进展与演化进行细致梳理与剖析,从多维视角下对目前大量的域间授权互操作实现方案进行分类比较,详细分析典型方案的理论原理、技术优势和局限性,给出互操作策略集成理论发展的总体视图,概括了其基本特点和发展趋势。 2、在有向角色图的基础上提出一种具有动态自调节能力的域间映射规则演化模型,利用属性约束空间构建了节点间的演化语义,通过约束满足性系数和安全评定系数等相关的阈值评估实现映射规则调节机制,并给出完整的演化实施方案。解决了目前互操作场景中权限控制粒度过粗、映射关系不易改变以及缺乏演化语义等问题。 3、 基于规则状态思想提出面向XACML策略专有的规则冲突及规则冗余分析方法。该方案通过形式化推导分析了主体属性层次和资源属性层次操作关联导致的多种冲突类型及其本质原因,给出详细的冲突检测实施算法,实现冲突规则的域定位,利用状态覆盖思想分析造成规则冗余的原因,给出多种规则评估合并算法下的冗余判定定理。 4、针对策略规模缩减、高效策略索引等大规模策略处理的难点瓶颈,设计并实现了一种采用多层次优化技术的策略判定引擎。该引擎通过规则精化技术缩减策略库规模,利用判定结果缓存、属性缓存、策略缓存组成的多级缓存降低引擎和其他功能部件的通信损耗,基于两阶段策略索引技术提升策略检索及判定效率,通过仿真测试验证多层次优化技术带来的整体效率优势。 5、提出一种针对共性安全服务构件的开发组装和集成建模方法。利用面向切面编程、依赖注入、反射机制等技术搭建共性安全构件三层体系平台,通过BPEL语言编排安全服务构件的调用序列并设计安全访问业务流程,将构件开发与业务流程开发无缝结合,实现了快速拆卸、动态调整、实时组装的安全设施搭建平台。