182 resultados para Vapor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexangular indium nitride nanoflower pattern is observed from scanning electron microscopy and atomic force microscopy. The sample is grown on c-plane (0001) sapphire by metal organic chemical vapor deposition with intentional introduction of hydrogen gas. With the aid of hydrogen, a stable existence of metallic indium is achieved. This will induce the growth of InN nanoflowers via self-catalysis vapor-liquid-solid (VLS) process. It is found that the VLS process is modulated by the interface kinetics and thermodynamics among the sapphire substrate, indium, and InN, which leads to the special morphology of the authors' InN nanoflower pattern. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of In doped low-temperature (LT) AlGaN interlayer on the properties of GaN/Si(111) by MOCVD have been investigated. Using In doping LT-interlayer can decrease the stress sufficiently for avoiding crack formation in a thick (2.0 mu m) GaN layer. Significant improvement in the crystal and optical properties of GaN layer is also achieved. In doping is observed to reduce the stress in AlGaN interlayer measured by high-resolution X-ray diffraction (HRXRD). It can provide more compressive stress to counteract tensile stress and reduce crack density in subsequent GaN layer. Moreover, as a surfactant, indium is observed to cause an enhanced PL intensity and the narrowed linewidths of PL and XRD spectra for the LT-interlayer. Additionally, the crystal quality of GaN layer is found to be dependent on the growth parameters of underneath In-doped LT-AlGaN interlayer. The optimal parameters, such as TMIn flow rate, TMAl flow rates and thickness, are achieved to obtain nearly 2.0 mu m thick crack free GaN film with advanced optical and crystal properties. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO crystals were grown by CVT method in closed quartz tube under seeded condition. Carbon was used as a transport agent to enhance the chemical transport of ZnO in the growth process. ZnO single crystals were grown by using GaN/sapphire and GaN/Si wafer as seeds. The property and crystal quality of the ZnO single crystals was studied by photoluminescence spectroscopy and X-ray diffraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetophotoluminescence properties of Zn0.88Mn0.12Se thin films grown by metal-organic chemical vapor deposition on GaAs substrates are investigated in fields up to 10 T. The linewidth of the excitonic luminescence peaks decreases with the increasing magnetic field (< 1 T), but the peak energy is almost unchanged. There is a crossover of the photoluminescence intensities between interband and bound excitonic transitions as the magnetic field is increased to about 1 T. These behaviors are interpreted by the strong tuning of the local alloy disorder potential by the applied magnetic field. In addition, the magnetic field-induced suppression of the energy transfers from excitons to Mn2+ ions is also observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Al composition of metalorganic chemical vapor deposition (MOCVD)-grown AlGaN alloy layers is found to be greatly influenced by the parasitic reaction between ammonia (NH3) and trimethylaluminum (TMAI). The growth process of AlN is carefully investigated by monitoring the in situ optical reflection. The abnormal dependencies of growth rate on growth temperature, reactor pressure, and flux of NH3 are observed and can be well explained by the effect of parasitic reaction. The increase of growth rate with increasing flux of TMAI is found to depend on the growth temperature and reactor pressure due to the presence of parasitic effect. A relatively low growth temperature and a reduced reactor pressure are suggested for the effective decrease of parasitic reaction during the MOCVD growth of AlN and probably lead to a more effective incorporation of Al into the AlGaN layers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MnSb/porous silicon hybrid structure was prepared by physical vapor deposition technique. The structure and surface morphology of the MnSb films were analyzed by X-ray diffraction and scanning electron microscope, respectively. The magnetic hysteresis loops were obtained by an alternative gradient magnetometer. Based on the measurements, only MnSb phase was found and the surface morphology was rough and island-like. MnSb thin films show ferromagnetism at room temperature. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the transmission electron microscopy (TEM) study of the microstructure of wurtzitic GaN films grown on Si(I I I) substrates with AlN buffer layers by metalorganic chemical vapor deposition (MOCVD) method. An amorphous layer was formed at the interface between Si and AlN when thick GaN film was grown. We propose the amorphous layer was induced by the large stress at the interface when thick GaN was grown. The In0.1Ga0.9N/GaN multiple quantum well (MQW) reduced the dislocation density by obstructing the mixed and screw dislocations from passing through the MQW. But no evident reduction of the edge dislocations by the MQW was observed. It was found that dislocations located at the boundaries of grains slightly in-plane misoriented have screw component. Inversion domain is also observed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two Mg-doped GaN films with different doping concentrations were grown by a metalorganic chemical vapor deposition technique. Photoluminescence (PL) experiments were carried out to investigate the optical properties of these films. For highly Mg-doped GaN, the PL spectra at 10 K are composed of a blue luminescence (BL) band at 2.857 eV and two excitonic luminescence lines at 3.342 eV and 3.282 eV, in addition to a L2 phonon replica at 3.212 eV. The intensity of the L1 line decreases monotonously with an increase,in temperature. However, the intensity of the L2 line first slowly increases at first, and then decreases quickly with an increase in temperature. The two lines are attributed to bound excitonic emissions at extended defects. The BL band is most likely due to the transition from deep donor Mg-V-N complex to Mg shallow acceptor. From the temperature dependence of the luminescence peak intensity of the BL band, the activation energy of acceptor Mg was found to be 290 meV. (C) 2003 American Vacuum Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaN1-xPx ternary alloys with high P compositions were deposited on sapphire substrates by means of metal-organic chemical vapor deposition. Depth profiles of the elements indicate that the maximum P/N composition ratio is about 17% and a uniform distribution of the P atoms in the alloys is achieved. 2theta/omega XRD spectra demonstrate that the (0002) peak of the GaN1-xPx alloys shifts to smaller angle with increasing P composition. From the photoluminescence (PL) spectra, the red shifts to the bandedge emission of GaN are determined to be 73, 78, 100 and 87 meV for the GaN1-xPx alloys with the P/N composition ratios of 3%, 11%, 15% and 17%, respectively. No PL peak related to GaP is observed, indicating that the phase separation between GaN and GaP is well suppressed in our GaN1-xPx samples. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stoichiometric ZnSe nanowires have been synthesized through a vapor phase reaction of zinc and selenium powder on the (100) silicon substrate coated with a gold film of 2 nm in thickness. The microstructures and the chemical compositions of the as-grown nanowires have been investigated by means of electron microscopy, the energy dispersive spectroscopy, and Raman spectroscopy. The results reveal that the as-grown materials consist of ZnSe nanowires with diameters ranging from 5 to 50 nm. Photoluminescence of the sample demonstrates a strong green emission from room temperature down to 10 K. This is attributed to the recombination of electrons from conduction band to the medium deep Au acceptors. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selective area growth (SAG) of GaN on SiO2 stripe-patterned GaN/GaAs(001) substrates was carried out by metalorganic vapor-phase epitaxy. The SAG samples were investigated by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). SEM observations showed that the morphology of SAG GaN is strongly dependent on the window stripe orientation and slightly affected by the orientation relationship between the window stripes and the gas flow. The (I 1 1)B sidewalls formed on the SAG GaN stripes are found to be stable. XRD measurements indicated the full-widths at half-maximum (FWHMs) of cubic GaN (0 0 2) rocking curves are reduced after SAG. The measured FWHMs with omega-axis parallel to [1(1) over bar 0] are always larger than the FWHM values obtained with omega-axis parallel to [I 10], regardless of the orientation relationship between the w-axis and the GaN stripes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction of residual strain in cubic GaN growth by inserting a thermoannealing process is investigated. It is found that the epilayer with smaller tensile strain is subject to a wider optimal "growth window." Based on this process, we obtain the high-quality GaN film of pure cubic phase with the thickness of 4 mum by metalorganic chemical vapor deposition. The photoluminescence spectrum at room temperature shows the thick GaN layer has a near-band emission peak with a full width at half maximum of 42 meV which confirms its high crystal quality, further supported by the x-ray (002) diffraction measurement. A simplified model is demonstrated to interpret this strain effect on the growth process. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations on photoluminescence properties of (11 (2) over bar0) GaN grown on (1 (1) over bar 02) Al2O3 substrate by metalorganic chemical-vapor deposition are reported. Several emission lines not reported before are observed at low temperature. The sharp peak at 3.359 eV is attributed to the exciton bound to the neutral acceptor. Another peak at 3.310 eV represents a free-to-bound, probably a free electron-to-acceptor, transition. The 3.241 and 3.170 eV lines are interpreted as phonon replica lines of the 3.310 eV line. The phonon energy is 70 meV, consistent with the energy of transverse optical E-1 phonon. The optical properties of the lines are analyzed. (C) 2003 American Institute of Physics.