244 resultados para Spin trapping
Resumo:
The electronic states of a hydrogenic donor impurity in GaAs/GaAlAs quantum wells are investigated theoretically in the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling. The splits of electron energy levels are calculated. The results show that (1) the split energy of the excited state is larger than that of the ground state; (2) the split energy peak appears as the GaAs well width increases from zero; and (3) the maximum split energy reaches about 1.6 meV. Our results are useful for the application of Rashba spin-orbit coupling to photoelectric devices. (c) 2008 American Institute of Physics.
Resumo:
The center-of-mass motion of quasi-two-dimensional excitons with spin-orbit coupling is calculated within the framework of effective mass theory. The results indicate that the spin-orbit coupling will induce a controllable bright-to-dark transition in a quasi-two-dimensional exciton system. This procedure can work as a way to increase the lifetime of excitons. (c) 2008 American Institute of Physics.
Resumo:
The hole-mediated ferromagnetism in (In,Mn)As quantum dots is investigated using the k center dot p method and the mean field model. It is found that the (In,Mn)As quantum dot can be ferromagnetic at room temperature when there is one hole in the dot. For the spherical quantum dots, the Curie temperature decreases as the diameter increases, and increases as the effective composition of magnetic ions increases. It is interesting to find that the (In,Mn)As oblate quantum dot has highly anisotropic Zeeman splitting and ferromagnetism due to the spin-orbit coupling effect, which can be used as an uniaxial spin amplifier. (c) 2008 American Institute of Physics.
Resumo:
The thermodynamic properties of the spin-1/2 diamond quantum Heisenberg chain model have been investigated by means of the transfer matrix renormalization group (TMRG) method. Considering different crystal structures, by changing the interactions among different spins and the external magnetic fields, we first investigate the magnetic susceptibility, magnetization, and specific heat of the distorted diamond chain as a model of ferrimagnetic spin systems. The susceptibility and the specific heat show different features for different ferromagnetic (F) and antiferromagnetic (AF) interactions and different magnetic fields. A 1/3 magnetization plateau is observed at low temperature in a magnetization curve. Then, we discuss the theoretical mechanism of the double-peak structure of the magnetic susceptibility and the three-peak structure of the specific heat of the compound Cu-3(CO3)(2)(OH)(2), on which an elegant measurement was performed by Kikuchi [Phys. Rev. Lett. 94, 227201 (2005)]. Our computed results are consistent with the main characteristics of the experimental data. Meanwhile, we find that the double-peak structure of susceptibility can be found in several different kinds of spin interactions in the diamond chain. Moreover, a three-peak behavior is observed in the TMRG results of magnetic susceptibility. In addition, we perform calculations relevant for some experiments and explain the characteristics of these materials. (c) 2007 American Institute of Physics.
Resumo:
We study the disentanglement evolution of two spin qubits which interact with a general XY spin-chain environment. The dynamical process of the disentanglement is numerically and analytically investigated in the vicinity of a quantum phase transition (QPT) of the spin chain in both weak and strong coupling cases. We find that the disentanglement of the two spin qubits may be greatly enhanced by the quantum critical behavior of the environmental spin chain. We give a detailed analysis to facilitate the understanding of the QPT-enhanced decaying behavior of the coherence factor. Furthermore, the scaling behavior in the disentanglement dynamics is also revealed and analyzed.
Resumo:
This letter reports on the Raman, optical and magnetic properties of FeNi co-doped ZnO nanowires prepared via a soft chemical solution method. The microstructural investigations show that the NiFe co-dopants are substituted into wurtzite ZnO nanostructure without forming any secondary phase. The co-doped nanowires show a remarkable reduction of 34 nm (267.9 meV) in the optical band gap, while suppression in the deep-level defect transition in visible luminescence. Furthermore, these nanowires exhibit ferromagnetism and an interesting low-temperature spin glass behavior, which may arise due to the presence of disorder and strong interactions of frustrated spin moments of Ni and Fe co-dopants on the ZnO lattice sites. Copyright (C) EPLA, 2009
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.
Resumo:
We investigate theoretically the spin states in InAs/AlSb/GaSb broken-gap quantum wells by solving the Kane model and the Poisson equation self-consistently. The spin states in InAs/AlSb/GaSb quantum wells are quite different from those obtained by the single-band Rashba model due to the electron-hole hybridization. The Rashba spin splitting of the lowest conduction subband shows an oscillating behavior. The D'yakonov-Perel' spin-relaxation time shows several peaks with increasing the Fermi wave vector. By inserting an AlSb barrier between the InAs and GaSb layers, the hybridization can be greatly reduced. Consequently, the spin orientation, the spin splitting, and the D'yakonov-Perel' spin-relaxation time can be tuned significantly by changing the thickness of the AlSb barrier.
Resumo:
Electron-spin dynamics in InAs/GaAs heterostructures consisting of a single layer of InAs (1/3-1 monolayer) embedded in (001) and (311)A GaAs matrix was studied by means of time-resolved Kerr rotation spectroscopy. The spin-relaxation time of the submonolayer InAs samples is significantly enhanced, compared with that of the monolayer InAs sample. The electron-spin-relaxation time and the effective g factor in submonolayer samples were found to be strongly dependent on the photogenerated carrier density. The contribution from both the D'yakonov-Perel' mechanism and Bir-Aronov-Pikus mechanism are discussed to interpret the temperature dependence of spin decoherence at various carrier densities.
Resumo:
We report on the investigation of electron spin quantum beats at room temperature in GaAsN thin films by time-resolved Kerr rotation technique. The measurement of the quantum beats, which originate from the Larmor precession of electron spins in external transverse magnetic field, yields an accurate determination of the conduction electron g factor. We show that the g factor of GaAs1-xNx thin films is significantly changed by the introduction of a small nitrogen fraction.
Resumo:
Spin splitting of the AlyGa1-yAs/GaAs/AlxGa1-xAs/AlyGa1-yAs (x not equal y) step quantum wells (QWs) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field.
Resumo:
Spin-orbit interactions in a two-dimensional electron gas were studied in an InAlAs/InGaAs/InAlAs quantum well. Since weak anti localization effects take place far beyond the diffusive regime, (i.e., the ratio of the characteristic magnetic field, at which the magnetoresistance correction maximum occurs, to the transport magnetic field is more than ten) the experimental data are examined by the Golub theory, which is applicable to both diffusive regime and ballistic regime. Satisfactory fitting lines to the experimental data have been achieved using the Golub theory. In the strong spin-orbit interaction two-dimensional electron gas system, the large spin splitting energy of 6.08 meV is observed mainly due to the high electron concentration in the quantum well. The temperature dependence of the phase-breaking rate is qualitatively in agreement with the theoretical predictions. (C) 2009 The Japan Society of Applied Physics
Resumo:
We have studied the exciton spin dynamics in single InAs quantum dots (QDs) with different exciton fine structural splitting (FSS) by transient luminescence measurements. We have established the correlation between exciton spin relaxation rate and the energy splitting of the FSS when FSS is nonzero and found that the spin relaxation rate in QD increases with a slope of 8.8x10(-4) ns(-1) mu eV(-1). Theoretical analyses based on the phonon-assisted relaxations via the deformation potential give a reasonable interpretation of the experimental results.
Resumo:
We study the spin-Hall effect in a generalized honeycomb lattice, which is described by a tight-binding Hamiltonian including the Rashba spin-orbit coupling and inversion-symmetry breaking terms brought about by a uniaxial pressure. The calculated spin-Hall conductance displays a series of exact or approximate plateaus for isotropic or anisotropic hopping integral parameters, respectively. We show that these plateaus are a consequence of the various Fermi-surface topologies when tuning epsilon(F). For the isotropic case, a consistent two-band analysis, as well as a Berry-phase interpretation. are also given. (C) 2009 Elsevier B.V. All rights reserved.