164 resultados para Single Molecule Magnets (SMMs), 1H NMR, 13C NMR, residual dipolar couplings (RDCs)
Resumo:
可逆加成裂解链转移(RAFT)聚合已经成为高分子合成的研究热点之一,这是因为它同时具有自由基聚合和活性聚合的优点,能够有效控制分子量和分子量分布,反应条件温和,可用于本体、溶液、悬浮、乳液等体系,单体范围广,能够合成嵌段、接枝、支化等复杂结构的聚合物。在已经报道的丙烯腈RAFT聚合研究中,所得聚合物具有较窄的分子量分布,分子量接近理论预测值,然而,最高值只达到5000左右。本论文的研究工作正是从这一个基本问题展开的。 1. 利用三硫代碳酸二苄基酯代替二硫代羧酸酯作为链转移剂,降低中间态自由基断裂反应的活化能,保证活性态与休眠态之间的平衡以一较快的交换速率进行,聚合结果表明,在文献报道的反应条件下,聚合速率有了明显的提高,同时聚合以一种可控的方式进行,所得聚合物分子量最高达8000,且分子量分布较窄。 2. 将二硫代苯甲酸异丙腈酯调控的丙烯腈聚合实验参数优化,提高反应温度降低缓聚,选择碳酸乙二酯作为溶剂减小链转移反应,导致中间态自由基断裂反应的效率大大提高,以一种可控/活性自由基聚合方式进行,首次合成了分子量高达32800、分子量分布指数小于1.3的聚丙烯腈。 3. 由于RAFT试剂很难制备和长期保存,当以二硫代物作为替代的调控试剂, 偶氮二异丁腈作为引发剂,可以在“原位”合成RAFT聚合所需的链转移剂,直接调控丙烯腈的自由基聚合,得到高分子量、分子量分布指数比较小的丙烯腈均聚物和共聚物。 4. 将不对称的双乙烯基单体作为支化剂引入到丙烯腈聚合体系中,同时采用RAFT技术来抑制交联反应,单体转化率增加至较高值而不形成凝胶,1H NMR和凝胶渗透色谱证明了合成的聚合物具有支化结构,并且聚合物的特性粘数低于相近分子量的线性聚合物的对应值。
Resumo:
本文以大环化合物杯芳烃羧酸为萃取体系,系统考察稀土元素在该体系中的萃取分离性能,比较了钍与稀土元素的萃取性质差异,从而为杯芳烃羧酸在该分离领域中的应用提供一定的实验数据,此外,采用无机水热合成制备了含杯[8]芳烃的三元超分子配位聚合物并表征其结构,具体研究内容如下: 1、 合成杯芳烃并进行化学修饰得萃取剂杯芳烃羧酸,采用熔点测定、元素分析、TG-DTA、FT-IR和1H-NMR等分析方法表征,并利用两相滴定法测定了杯芳烃羧酸的基本常数。 2、 研究杯芳烃羧酸-CHCl3/RE-HCl萃取体系碱金属离子、离子强度、酸度、温度和萃取剂浓度对Eu(III)的萃取分配比影响,并分析其萃取机理。在此基础上,探索杯芳烃羧酸的协同萃取性能,发现杯[4]芳烃羧酸与伯胺N1923的ABC酸碱耦合协萃体系对轻、中、重稀土有不同的协萃能力,协萃系数与原子序数呈“双峰效应”。 3、 在萃取热力学基础上,利用层流恒界面池研究杯[4]芳烃羧酸萃取Nd(III)的动力学性质,确定了萃取反应控制模式随条件不同有所变化,化学反应在相界面上进行,并获得了萃取反应速率方程。 4、 以杯芳烃羧酸-CHCl3/Th-HCl体系研究钍的萃取性能,考察了碱金属离子、离子强度、酸度、温度和萃取剂浓度对Th(IV)的萃取影响,比较其与稀土萃取性能的差异,并在此基础上进一步研究与伯胺N1923协同萃取钍的性能,分析了协同萃取反应机制。 5、 水热合成并表征了含磺化杯[8]芳烃,2,2’-联吡啶与镍的三元超分子配合物。磺化杯[8]在该配合物中呈“双-反向锥式”构型,分子间由氢键和C-H…π相互作用将四核Ni簇连接成三维超分子结构。
Resumo:
随着材料科学的飞速发展,人们对具有不同结构和性能的聚合物材料提出了更高、更广泛的要求,合成出具有新型结构的聚合物,并研究其独特的性质和功能已成为当今高分子领域研究的主要方向。旋光性聚合物具有独特的不对称结构,在自然界的生物体中,旋光性大分子特有的不对称结构在维持生命过程、新陈代谢、物种繁衍、进化等方面都起着决定性的作用,在人工合成聚合物领域,旋光性聚合物也已经在手性识别和对映体拆分方面取得了广泛应用,并在手性催化剂、液晶、光开关、非线性光学和生物医药等领域表现出了潜在的应用前景。在本论文中,我们以具有强轴手性结构的2,2'-取代1,1'-联萘为手性源,设计并合成得到了多个系列的旋光性和非旋光性聚合物,取得了一些有意义的结果。1.含联萘基团旋光性聚酰亚胺的合成与性质从1,1'-联-2-萘酚出发合成了新型旋光性和非旋光性二酐单体,即2,2'-(3,3',-(3,3', 4,4'-四酸二酐)二苯甲酰氧基-1,1'-联萘((±)-,(R)-和(S)-BNDEDA),并通过BNDEDA和2,2'-(3,3', 4,4'-四酸二酐)二苯甲酰胺基-1,1'-联萘((±)-和(S)-BNDADA)同各种二胺的缩合聚合,制备得到了一系列旋光性和非旋光性聚酯酰亚胺PEIs和聚酰胺酰亚胺PAIs。(1) 所得芳香聚酰亚胺都具有良好的溶解性,较高的玻璃化转变温度和热分解温度:(2) PAIs和PEIs同它们相应的模型化合物在DMF溶液中具有基本相同的紫外可见吸收光谱,这说明聚合物沿分子主链方向的共轭长度局限在重复单元的结构之内,因此PAIs和PEIs溶液涂敷所得薄膜均表现出良好的透光性;(3) PAIs和PEIs都是非晶聚合物,但是它们在2θ为~12°处出现的衍射峰又说明在聚合物体系中存在着一定的长程有序结构,PEIs的有序性要高于PAIs的有序性,偶数亚甲基长脂肪链的引入没有造成PEI有序性的明显提高,而奇数亚甲基长脂肪链的引入则使得PEI在2θ为12°处的衍射峰更为明显;(4) 由于无法紧密排列,高分子链间的相互作用力不强,因此旋光性和非旋光性聚合物在热性能、溶解性和结晶性等方面均没有表现出明显差异;(5) 旋光性芳香PAls和PEIs都具有比它们相应模型化合物高的特性旋光值,CD谱图和构象分析结果表明,由于1,1'-联萘基团的轴手性和分子主链的刚性,旋光性芳香PAIs和PEIs的高分子链都具有高级手性构象结构;(6) 由于1,1'-联萘基团的二面角随着温度的升高而发生变化,因此聚合物的手性光学性质对温度表现出了明显的依赖关系。(7) 旋光性PAIs在DMF溶液中和在固体状态下都具有很好的旋光热稳定性,旋光性PEIs在固体状态下于玻璃化转变温度加热48 h也没有出现旋光能力的降低;(8) 光学双折射测试结果表明,溶液涂敷所得非旋光性聚合物薄膜的负性双折射要强于相应旋光性聚合物薄膜的负性双折射。2.新型联萘二酐和二胺单体的合成与聚合从1,1'-联-2-萘酚出发对1,1'-联萘基团的不同取得位置进行官能化,合成得到了九种14个新型联萘化合物,并成功地将改进的Curtius和Gabriel反应应用到联萘类二胺单体的合成中。利用所合成的新型二酐单体和二胺单体分别同各种二胺和二酐的缩合聚合,制备得到了一系列具有新型结构的非旋光性芳香聚酰亚胺,聚合物表现出良好的溶解性,较高的玻璃化转变温度和热分解温度。X-射线衍射谱图说明高分子链从1,1'-联萘基团6,6'-位连接所得聚酰亚胺具有较好的结构有序性。3.主链螺旋聚甲基丙烯酸联萘酚单甲醚酯的合成与表征从2-甲氧基-2'-羟基-1,1'-联萘出发,合成得到了新型旋光性和非旋光性甲基丙烯酸酯聚合单体,并在AIBN的自由基引发作用下聚合得到了具有主链螺旋结构的新型旋光性聚合物。(1) 手性光学性质的研究结果表明,旋光性聚甲基丙烯酸酯具有主链单手螺旋结构;(2) 聚合过程中不存在对映体选择性或对映有择性的聚合方式:(3) 聚合物核磁氢谱的研究结果表明,在旋光性聚合物体系中,位于侧链的联萘基团可能取两种构象结构,即动力学稳定和热力学稳定的构象。随着旋光性聚合物单手主链螺旋结构的形成,使甲氧基处于较高屏蔽状态下的联萘反式构象成为动力学稳定构象;(4) 变温核磁氢谱的研究表明,温度升高将造成动力学稳定的联萘反式构象结构在聚合物中的比例减少,并伴随着聚合物特性旋光值的降低,同时热力学稳定的联萘顺式构象结构在聚合物中的比例在增加;(5) 手性光学性质和核磁氢谱的研究结果表明,旋光性聚合物的主链手性构象(与侧链上联萘基团的构象相对应)对分子量的高低具有依赖关系;(6) 聚合单体同具有不同对映体过量的旋光性聚合物具有基本相同的紫外吸收光谱,说明旋光性聚合物中联萘基团构象结构的变化并未造成共轭程度的较大变化。而无论旋光性或是非旋光性聚合物所表现出来的荧光性则说明在聚合物体系中可能存在着联萘侧基的相互作用,形成了π电子跃迁。4.含联萘基团旋光性聚酯和聚酰胺的合成与性质通过(±)-和(S)-2,2'-二甲氧基-1,1-联萘-6,6'-二酰氯((±)-和(S)-DMBNDC)分别同1,1'-联-2-萘酚进行的界面缩聚,以及分别同各种芳香二胺在DMAc中的溶液缩聚合成得到了一系列旋光性和非旋光性聚酯和聚酰胺。(1) 聚合过程中不存在对映有择或对映体选择性的聚合方式;(2) GPC、~1H NMR谱图以及激光质谱的研究结果表明,DMBNDC同1,1'-联-2-萘酚的缩合产物可能主要以环状低聚物的形式存在;(3) 根据DMBNDC同1,1'-联-2-萘酚缩合所得产物的特性旋光值可以推断在聚合物体系中DMBNDC和1,1'-联-2-萘酚的手性结构具有良好的加和性:(4) (±)-和(S)-DMBNDC同各种芳香二胺聚合所得非旋光性和旋光性聚酰胺都表现出良好的溶解性,较高的玻璃化转变温度以及热稳定性。旋光性聚酰胺具有比相应非旋光性聚酰胺高的玻璃化转变温度;(5) 广角X-射线衍射谱图上的弥散峰表明所得聚酰胺具有非晶结构,但是随着二胺单元结构刚性的增强,聚合物在~13°处出现了新的衍射峰,说明聚合物结构的有序性得到了增强:(6) 旋光性聚酰胺都具有比模型化合物(S)-7高的特性旋光值,而且不同二胺单元结构造成了聚合物特性旋光值的较大变化,构象分析结果表明在旋光性聚酰胺的分子主链上存在着高级手性构象。
Resumo:
对导电聚苯胺研究的深入,它的一些潜在的应用正在逐步实现。这些应用使对聚苯胺需求正在逐年增加,要求聚苯胺的合成工艺进一步得到改善和提高。本论文以此为目的找到了适合工业化生产的合成路线,并对由该方法合成的聚苯胺和常规合成的聚苯胺进行对比研究。在此基础上开展了苯胺低聚体的合成与表征工作。1.采用H_2O_2-Fe~(2+)催化氧化体系合成了聚苯胺。经过优化的反应条件:◇ 以Fe~(2+)或Fe~(3+)为催化剂,其用量为单体的1/500(摩尔比):◇ 初始反应在冰浴中(温度为0℃)进行,随着反应的进行温度逐渐升至室温;共计反应24小时;◇ 体系中酸浓度控制在1 mol/L左右;单体浓度介于0.5-1.0mol/L;◇ 氧化剂摩尔用量为单体的1-1.5倍。在这一反应条件下制得的聚苯胺,产率可达到70%,电导率在10°S/cm(HCl掺杂,粉末压片测电导)。该材料具有低分子量(2000-10000)、高溶解性(NMP,DMF,DMSO),低凝胶化等特点,对比研究了由该方法合成聚苯胺和利用(NH_4)_2S_O_8合成聚苯胺的光谱特征,结晶性和热稳定性。2.用开路电位和现场紫外的方法跟踪H_2O_2-Fe~(2+)体系苯胺的聚合过程,发现H_2O_2-Fe~(2+)体系与(NH_4)_2S_2O_8体系相比,苯胺的聚合过程存在一定的不同之处。如在该体系中不存在诱导期;氧化剂分解速度慢,聚合时间较长;氧化电位低,在反应过程中聚合物链趋向于中间氧化态:但是活性链的末端需处于高氧化态才能完成链增长过程。整个反应过程中放热不明显。根据实验结果给出H_2O_2-Fe~(2+)体系苯胺的聚合机理。3.利用化学氧化缩合和电化学方法合成了苯/胺封端的四聚体,对两种方法合成的苯胺四聚体进行光谱表征,证明了苯胺四聚体的结构。通过研究苯胺四聚体的~1H NMR,证明在中间氧化态的苯胺四聚体中存在三种位置异构体,异构体相对含量随溶剂的不同而不同。进一步研究~(13)C NMR,证明中间氧化态的苯胺四聚体结构中含有顺反异构体。这些异构体的存在使得四聚体的~(13)CNMR变得十分复杂,本论文尝试对中间氧化态的苯胺四聚体的~(13)C NMR进行季碳峰的归属。4.合成了还原态和氧化态苯封端二聚体、三聚体和四聚体。通过FTIR、UV-Vis和NMR表征了还原态和氧化态的苯封端低聚体,并对谱峰进行归属。氧化态低聚体分子在溶液中的构象影响紫外光谱可见区的吸收带。5.对掺杂态低聚体进行了UV-Vis和NMR谱的研究,UV-Vis光谱表明苯胺低聚体和聚苯胺掺杂过程具有相似的电荷转移方式和结构变化。而四聚体更具有代表性。NMR结果表明苯胺低聚体掺杂后主链上的电荷重新分布,环上的H原子上的电子被C原子吸引,电荷密度降低,在~1H NMR中谱峰向低场移动。C原子的谱峰也相应发生变化,醌环上电荷密度增加,全部C原子的峰向高场移动,与醌环相邻苯环受其影响季碳峰移向高场,非季碳峰移向低场。更远处的苯环也受到影响,但影响不大。这些变化表明苯胺低聚体的掺杂符合“BQ四环变体模型”。由此对“BQ四环变体模型”提供了新的证据。
Resumo:
针对聚β一经基丁酸酷(PHB)加工窗口窄、脆性严重等不足,本论文采用在PHB分子链上接枝极性小分子顺丁烯二酸醉(MA)和将PHB与聚8一已内醋(PCL)进行醋交换的方法对其分子链进行化学修饰,试图通过PHB的分子结构变化改变其聚集态结构,从而使PHB在性能上有较大幅度的提高。获得的主要研究结果如下:1.本工作采用自由基引发聚合方法研究了PHB与MA的接枝反应。讨论了各种反应条件,如溶剂种类、单体浓度、引发剂浓度、反应时间和温度等对接枝反应的影响,确定了PHB接枝MA的最佳反应条件。采用对酸配基团进行化学滴定和~(13)C NMR方法对接枝产物的接枝率和结构进行了表征。结果表明,M八接枝到PHB的叔碳原子上,接枝率可以控制在0.2∽0.85%的范围内。2.采用DSC、WARD、POM和TGA等方法对PHB及其接枝顺丁烯二酸配共聚物(PHB-g-MA)的结晶行为、·热稳定性和生物降解特性进行了研究。结果表明:接枝产物的热稳定性明显优于PHB,热分解温度随接枝率不同提高了20-40℃。接枝后,MA基团阻碍了PHB的结晶,降低了PHB的结晶能力,使得PHB的结晶行为发生很大的变化。结晶温度降低,冷结晶温度升高,结晶焙略有下降。与PHB相比,PHB-g-MA的球晶环带结构变得清晰规整,随着接枝率的提高,球晶的环带宽度逐渐增加。在 DSC升温过程中PHB-g-MA发生重结晶,产生熔融双峰现象。但是WAXD的实验结果表明,PHB接枝MA并没有改变它的结晶结构。J . PHB接枝MA后,PHB的力学性能保持不变,并且MA基团能够促进PHB的生物降解和改善PHB的溶解性。4.采用FTIR和‘~1H NMR研究了PHB-g-MA的热分解机理。结果表明,PHB-g-MA的热分解机理与PHB相同:在高温条件下,PHB分子链的醋基部分形成六元环结构,断链时夺取亚甲基氢,生成竣基和双键两种端基。5.采用TGA方法选择不同的升温速率研究了PHB和不同接枝率的PHB-g-MA的热分解行为。PHB-g-MA的热分解温度随着接枝率的增加逐渐增加,然后逐渐下降。接枝率为0.56%时,PHB-g-MA的热分解温度最高,达到256.6℃。由Flynn-Wall-Ozawa方法得到的PHB的热分解活化能随着热失重率的增加而逐渐下降;而PHB-g-MA的热分解活化能随着接枝率和热失重率的不同,表现出不同的规律。接枝率为0.56%时,它的热分解活化能达到最大,为116.51kJ/mol.采用DSC方法对PHB和PHB-g-MA的等温结晶动力学和熔融行为进行了研究。用Avrarnl方程分析的结果表明,MA的引入使得PHB的结晶能力下降,但是并没有改变它的结晶成核机理和生长方式。随着接枝率的增加,结晶活化能增加。等温结晶后的PHB-g-MA表现出双熔融行为,这是在升温过程中发生熔融重结晶的结果。这种熔融行为不仅与样品的接枝率有关,而且也会受到结晶温度的影响7.在不同的冷却速率下用DSC方法研究了PHB和PHB-g-MA的非等温结晶动力学和熔融行为。结果表明,PHB和PHB-g-MA在非等温结晶过程中的结晶行为与冷却速率和接枝率密切相关。用Jeziorny方法改进的Avrami方程分析了PHB和PHB-g-MA的非等温结晶行为。当冷却速率较低时,PHB-9-MA的结晶机理与PHB不同。非等温结晶后的PHB-g-MA的熔融行为表现出熔融双峰,这是在升温过程中发生熔融重结晶的结果。8.用DSC方法研究了甲壳胺(CS)的热行为,测得CS的玻璃化转变温度(Tg)为80.4'C。考察了不同组成的PHB/CS和PHB-g-MA/CS共混体系的热行为。在PHB/CS=20/80, 40/60的共混体系中有单一的Tg出现;而 PHB-g-MA/CS=20/80, 40/60, 60/40的共混体系中也有单一的Tgo随着共混体系中PHB含量的减少,T_g逐渐增加,表明这些共混体系具有相容性。在共混体系中,随着CS含量的增加,PHB和PHB-g-MA组分的熔点和熔融烩显著降低。与对PHB相比,CS对PHB-g-MA熔点和熔融焙的抑止作用更大。9.通过FTIR, WAXD和XP S研究了相容共混体系中PHB, PHB-g-MA与CS组.分间的特殊相互作用。FTIR结果表明两组.分间形成较弱的氢键。这种氢键作用比CS自身分子内的氢键作用小,以至于很难“破坏”CS自身的聚集态结构,但是它可以“扰乱”PHB, PHB-g-MA和CS原有的结晶形貌。这一结果被WAXD进一步证实。XPS的结果清楚地表明分子间氢键作用是通过CS中的-NH_2与PHB-g-MA的C=O产生的。在PHB分子链中接枝MA基团,可以增强这种相互作用,使PHB-g-MAICS-共混体系的Nls和C1s结合能和谱型发生明显改变。10.用熔融法和溶液法将PHB和PCL进行醋交换反应,制备PHB和PCL的共聚醋(PHB-co-PCL).讨论了各种反应条件,如组分、反应时间和温度、催化剂种类和用量等对醋交换反应的影响。采用~(13)C NMR和FTIR方法对醋交换产物的结构进行了表征。结果表明,提高反应温度和延长反应时间有利于酷交换反应的发生。调整反应条件,共聚酷中PCL的含量可以控制在0.95-4.81%的范围内。在本实验条件下,制备的PHB-co-PCL均为嵌段共聚物。11.采用DSC、WARD、POM和TGA等方法对PHB-co-PCL的热行为、晶体结构和热稳定性进行了研究。随着酷交换量的增加,PHB-co-PCL的结晶行为发生很大的变化。冷结晶温度、结晶一温度和熔点均降低。并且 PHB-co-PCL在升温过程中表现出熔融双峰,这是共聚酷在结晶过程中结晶不完善导致在升温过程中发生熔融重结晶的结果,。PCL链段的引入并没有改变PHB的晶体结构,却使得共聚酷的结晶规整性下降。而且PHB-co-PCL的热稳定性基本保持不变。
Resumo:
本文合成了几种多氟β-二酮配合物,并将其引入无机/有机杂化基质及中孔分子筛材料中,从而制备了发光性能良好的杂化材料。选用新型的多氟β-二酮作为有机配体,合成了几种衫、试配合物,通过IR、1H NMR等手段证实了配合物的生成,并研究了其发光性质。首次得到了以4,4,5,5,6,6,6-七氟-1-2-噻吩基)-1-已二酮(HTH)为配体的衫的配合物单晶(Sm(HT)3Phen),解析了其结构,结果表明其配位多面体为三角十二面体。将多氟三元配合物Tb(Tfacac)3phen通过溶胶一凝胶过程掺杂到γ-缩水甘油丙基醚三甲氧基硅烷(GPTMS)改性的有机/无机杂化基质中,制备了有机/无机杂化发光块状材料一及其薄膜材料;研究了稀土配合物在未改性基质和改性基质中的发光性质,以及不同基质对发光性能的影响,结果发现该杂化材料最大激发峰位相对于纯配合物发生了蓝移,且激发谱带变窄;考察了两种基质中配合物掺杂浓度对杂化材料的发光强度的影响,结果表明。稀土配合物在改性基质中比在未改性基质中掺杂浓度提高了。比较了粉末材料与相应薄膜的发光性能,发现薄膜材料巴的发光强度和荧光寿命有所降低,表明材料的不同状态对其发光性能有一定的影响。制备了中孔分子筛MCM-41及GPTMS、TMSPMC改性的有机/无机杂化中孔材料。回时成功地将稀土配合物Sm(HTH)3Phen、Tb(Tfacac)3Phen组装到MCM-41及两种改性的MCM-41中,合成了担载新型稀土有机配合物的无机-有机杂化中孔发光材料。通过对稀土配合物及其在分子筛中的荧光光谱分析,发现激发光谱发生了蓝移;而且不同的改性剂对不同的稀土配合物的影响不同。并制得了发光色纯度较高的稀土-TMSPMC-MCM-41复合发光体。
Resumo:
药物释放体系因其具有提高药物的疗效,降低药物的毒副作用,减少药物的服用次数,拓宽给药途径等特点,而成为近几年来人们研究的热点。生物可降解高分子,由于它们在体内可以降解,降解产物可以被机体吸收或代谢,不存在积累在体内的危险,因此成为药物释放体系的载体的首选材料。特别是脂肪族聚酷类高分子,在与聚乙二醇形成嵌段共聚物后,不仅具有生物可降解性,而月_大大地改善了材料与人体的生物相容性,作为药物载体材料时,延长了药物在体内的循环时间,降低了免疫响应性,引起了人们的极大兴趣。因此本论文主要是以MPEG-PLA两嵌段聚合物为药物的载体材料,详细研究了高分子量的MPEG-PLA两嵌段聚合物对紫杉醇的包裹,研究了MPEG-PLA和PLGA聚合物合金对胰岛素固体粉末的包裹,以及低分子量的MPEG-PLA的紫杉醇前药的合成、表征和由它制备而成的胶束的一些性质,取得了一些有意义的结果:1、采用改进的O/W乳液法,用高分子量的MPEG-PLA嵌段共聚物实现了对紫杉醇的纳米化包裹,并证实了聚合物的分子量对所制备的纳米微球的粒径的影响:分子量越大,粒径越大。同时发现了微球粒径越小,药物的包裹量越低。2、用扫描电镜(SEM)、光电子能谱(XPS)、差热分析(DSC)对纳米微球进行了分析和测定,结果表明,微球的尺寸在30Om-800nm范围,紫杉醇在纳米微球的表面几乎不存在,而是以无定形的状态分布在纳米微球中。3、对纳米微球中紫杉醇体外释放行为进行了侧定。它们显现出了明显的双相行为,即在初期释放速度很快,随后的释放速度变慢。同时,研究了MPEG-PLA的分子量对释放行为的影响:聚合物分子量越大,紫杉醇释放的速度就越慢。4、用固体粉末法和双乳液法对胰岛素进行了包裹,其中固体粉末法采用的是PLGA和MPEG-PLA两聚合物的混合溶液对纳米胰岛素颗粒进行了包裹,包裹率分析表明:固体粉末法对药物的包裹率高于双乳液法。所得的微球都是很好的球形,其尺寸在1-3um左右,它的剖面是核壳结构,胰岛素以晶粒的形式被包裹在微球中间。5、对固体粉末法和双乳液法制备的微球的体外释放行为进行了对比,发现由两种聚合物合金制备的微球的暴释现象得到了缓解,同时发现两种聚合物的配比不一样,其暴释缓解的程度不一样。6、以辛酸亚锡为催化剂成功地合成了低分子量的MPEG-PLA两嵌段聚合物。二经基乙酸配与过量的叔丁醇在DMAP存在下反应,成功制得了二轻基乙酸单叔丁酷。MPEG-PLA的端经基与二经基乙酸单叔丁酷在DCC参与下脱水酷化再将叔丁基去保护,便得到端梭基的MPEG-PLA。7、端基为梭基的MPEG-PLA与紫杉醇的2’-羟基或7-轻基进行了酷化反应,制备出MPEG-PLA-紫杉醇前药。8、制备了四种低分子量的MPEG-PLA-紫杉醇前药,用1H NMR和GPC进行了表征分析。紫杉醇前药中紫杉醇的含量最高可达到20%,依赖于MPEG-PLA中PLA段的长度。9、用荧光探针法考察了MPEG-PLA两嵌段聚合物和MPEG-PLA-紫杉醇前药的胶束化行为,发现前药总比相对应的两嵌段聚合物有更低的临界胶束浓度(CMC)。用透射电镜观察了胶束的形貌和尺寸大小,以及接药前后胶束尺寸的变化。发现都是很好的球状胶束,MPEG-PLA两嵌段聚合物和MPEG-PLA-紫杉醇前药胶束的平均粒径分别为25±3nm和33士Znm,说明聚合物在接药后,随着疏水部分分子量的增加,所形成的胶束粒径也增大。
Resumo:
本工作对聚丁二烯(PBD)进行了光谱微结构分析,主要考察了三个问题。1、PBD分子链构象对PBD红外光谱的影响本工作对高顺式(c)PBD样品进行了室温和低温(25℃和-150℃)红外光谱测定,发现高顺式PBD在低温下整个光谱吸收峰大部分峰宽变窄,峰强增加,特别是738cm~(-1)峰,在低温下位移至748cm~(-1),峰强增加一倍多。另外还观察到低温结晶态出现802和598cm~(-1)两个吸收峰,在以前文献中未曾有过报导,我们将它们归属为顺式结构结晶峰。通过计算分峰,原来738cm~(-1)峰分成两个位于742和727cm~(-1)的子峰,在低温下,两个子峰分别位移至748和735cm~(-1),与室温时比较,两个子峰半宽都明显变小。748cm~(-1)子峰峰强也大大增加。结构分析表明,顺式结构特征振动CH=CH面外变角与分子链的构象有密切联系,而仅式(T)和1.2(v)结构却不存在这种情况,因而967cm~(-1)(T)和911cm~(-1)(v)两特征峰低温下变化都很小。本工作认为顺式结构738cm~(-1)峰这一变化是由于顺式结构不同分子链构象所造成的。低温和室温下分峰所得的左子峰对应于最稳定构象产生的吸收,右子峰则对应于相对不稳定构象产生的吸收。同时本工作肯定了米晋瑁等人提出的红外光谱定量分析方法在高顺式样品中的适用性。2、PBD分子链序列结构对红外光谱的影响由于在非高顺式样品中存在CCC、CCT、CCV、TCV、TCT、VCV等多种序列形式,通过不同组成的PBD红外光谱分析,发现在乙烯基含量中、高的样品中,原来738cm~(-1)峰已不再存在,峰值出现在733cm~(-1)附近,而且受1.2结构部分吸收的严重影响,顺式结构CH=CH面外变角吸收已不再是顺式结构的特征峰。通过对850至650cm~(-1)光谱区的光谱解析,本工作认为朱晋瑁等人的红外光谱定量分析方法在乙烯含量中、高的样品中已不再适用。3、PBD拉曼光谱的微结构分析本工作对PBD拉曼光谱1600-1700cm~(-1)区进行了光谱测定,选择了1666、1652和1639.5cm~(-1)吸收峰作为T、C和V构型的特征峰,借助于景遐斌老师的计算分峰方法,对PBD样品进行微结构分析,结果表明,各吸收带拟合良好,特征峰峰位稳定,分别在1666±1、1652±1.5和1639.5±1 cm~(-1),半峰宽变化不大,峰与峰之间相互影响很小,也就是说,我们选用的特征峰是合理的。用分峰所得的相对面积,结合~1H-NMR测得的
Resumo:
稀土冠醚配合物由于其有趣的稀土/冠醚配比和结构以及其在稀土萃取分离、光谱探针等方面应用的可能性,引起了人们极大的研究兴趣,在固体配合物合成、晶体结构、配合物稳定性、冠醚在稀土萃取分离中应用等方面展开了广泛的研究。但是,对于不同配比配合物的反应机理及本质的探讨尚注意不够;三元配合物的合成工作较少;冠醚对稀土元素萃取需要有大体积对阴离子存在,且萃取效率不高,分离因数低。所有这些表明,对稀土冠醚配合物的合成及其性质,有必要作进一步深入的研究。本论文以冠醚(2,2)及其衍生物以及18-冠-6作为配体,研究其稀土配合物的结构及性质,取得了一些有意义的结果。1.合成轻稀土La-Nd硝酸盐与冠醚(2,2)配合物并测定了它们的晶体结构。晶体属于三斜晶系,空间群PT。随着原子序数增加,晶胞体积减小。配合物中,中心离子位于冠醚环中心,三个硝酸根均以双齿形式配位,其中两个位于位阻较小的冠醚环一侧,另一个位于其对侧。中心离子的配位数为12。指出硝酸稀土冠醚(2,2)配合物存在着两种不同的结构: [Ln(NO_3)_3(2,2)I (Ln = La - Sm); [Ln(NO_3)_2(2,2)]NO_3 (Ln = Eu)。用“堆积原理”解释了这种结构差异的原因。2.原INDO法计算了配合物La(NO_3)_3(2,2)的净电荷分布、电子结构、键级。用XPS验证了净电荷分布计算结果。键级计算结果表明,镧与配位原子间的键具有一定程度的共价性。镧的5d轨道对共价成份的贡献最大,而4f轨道基本上不参与成键,镧与冠醚环上氮原子间具有较强的作用,从而提高了稀土冠醚(2,2)配合物的稳定性。3.合成了稀土苦味酸盐与冠醚(2,2)配合物。元素分析结果指出:La、Pr-Sm配合物为无水的1:1配合物,Eu-Lu配合物为含水配合物。用IR、NMR、TG研究了La、Pr-Sm四个配合物的性质。IR研究结果表明,冠醚环上C-O-C、C-N-C反对称伸缩振动频率在形成配合物后向低波数位移40 cm~(-1)左右。N-H伸缩振动频率向低波数位移并发生分裂,其中一个分裂峰位移达-130 cm~(-1)。配位后,苦味酸C-O伸缩振动频率向低波数位移约10 cm~(-1),苯环上硝基面外摇摆振动发生分裂,表明苦味酸以酚氧原子及硝基氧原子参与配位。~1H NMR结果表明,配位后,冠醚环上质子向高场位移。4.合成了未见文献报道的十五个稀土-PMBP-18C6三元配合物。元素分析结果指出配合物组成为1:3:1,用IR、NMR、FAB-MS TG-DTA研究了配合物性质。IR结果指出:形成配合物后,冠醚C-O-C反对称伸缩振动频率位移较小,表明了稀土与冠醚间的作用较弱。FAB-MS中[Ln(PMBP)_2·18C6]~+谱峰丰度小于[Ln(PMBP)_2]~+,也反映了三元配合物中稀土与冠醚间的较弱的作用,表明三元配合物的稳定性不如二元配合物。选择La~(3+)、Lu~(3+)、Y~(3+)、Pr~(3+)、Eu~(3+)、Ho~(3+)的三元配合物进行了~1H NMR研究。对抗磁性离子La~(3+)、Lu~(3+)、Y~(3+)的配合物,与自由配体比较,各组质子均向高场位移。顺磁性离子Pr~(3+)、Eu~(3+)配合物中,PMBP苯环质子发生更大位移,同时谱峰宽化。冠醚环上质子及PMBP甲基质子共振峰消失。Ho~(3+)配合物由于强烈的宽化作用而没有出现质子核磁共振信号。5.研究冠醚(2,2)的两种衍生物对Pr~(3+)的萃取行为,结果表明,在没有大体积对阴离子存在下,冠醚对Pr(NO_3)_3能有较高的萃取率,这种现象尚未见文献报导。考察了冠醚浓度、稀土浓度等对萃取分配比的影响,随着冠醚浓度增加,萃取分配比增加,而稀土浓度增加时,萃取分配比下降。
Resumo:
I LnCl_3-LiCl-THF配合物的研究深入地研究了氯化稀土和氯化锂于四氢呋喃溶液中,以不同的摩尔比,在不同条件下的反应。实验结果表明,反应速度随着稀土元素原子半径的减小,LiCl/LnCl_3摩尔比的增大,以及四氢呋喃用量的增加而加快。通过紫外质谱元素分析和X-射线单晶结构分析等证明,随着不同的LiCl/LnCl_3摩尔比和结晶条件的不同,可以得到不同组成的LnCl_3-LiCl-TNF配合物。对(LaCl)(THF)_2(μ_2-Cl)_4[Li(THF)_2]_2和(LaCl)DME(μ_3-Cl)(μ_2-Cl)_5(La·DME)Li(THF)_2晶体的结构分析表明,前者为单斜晶系,P21/C空间群。a=10.542(4), b=32.236(4), c=11.182(6)A °; β=113.50(3) °, V=3484.97 A °~3. Z=4, R=0.0471;后者为三斜晶系,PT空间群,晶胞参数是:a=11.123(3), b=16.564(5), c=8.653(3)A °;α=95.16(3), β=95.63(3), γ=74.71(3) °;V=1527.0A °~3。Z=2,R=0.0303。实验结果还表明,μ_2-和μ_3-氯桥键是LnCl_3-LiCl-THF类配合物中最基本、最重要的配位键,这种键是通过多重键的方式起着稳定分子结构的作用。当进行与有机配体的交换反应时,由于它们的特殊稳定性,能起到阻止轻稀土有机配合物歧化反应的作用。II环戊二烯基轻镧系氯化物的合成及其稳定性的研究对(G_5H_5)_3Ln·THF和LnCl_3·3LiCl-THF (Ln=La, Nd)溶液反应的研究表明,由于μ_2-氯桥键的作用,轻稀土环戊二烯基化合物中环戊二烯基的再分配反应,在0℃或室温下都能迅速进行。通过两者不同的摩尔比反应,经元素分析、红外光谱、~1H NMR和质谱鉴定,方便地合成了C_5H_5 LnCl_2·2LiCl·5THF和(C_5H_5)_2LnCl.LiCl·nTHF (Ln=La, Nd)等配合物。这一结果表明(C_5H_5)_2LnCl.LiCl·nTHF配合物不仅能稳定地存在于THF溶液中,而且能在一定条件下析出结晶。对(C_5H_5)_2LaCl.LiCl·4THF的晶体结构测定表明,该晶体属于正交晶系,Pc2m空间群。a=12.306(4), b=23.056(6), c=26.701(11)A°; V=7575.81A°~3;而(C_5H_5)_2LaCl·LiCl(DME)_2THF晶体则属于六方晶系,a=12.967(4), b=12.967(4), c=24.108(10)A°;V=3510 A°~3。通过(G_5H_5)_3Ln·THF与LnCl_3·3THF (Ln=La, Nd)的反应进一步研究了轻稀土环戊二烯基氯化物的稳定性。经元素分析,红外光谱和晶体结构分析表明合成了[(η~5-C_5H_5)_4La_3Cl_5·3THF]_2·9THF和(C_5H_5)_2 NdCl·THF配合物,前者属于三斜晶系,P1空间群。a=11.690(3), b=11.750(5), c=18.433(6)A°; α=98.75(3), β=95.62(3), γ=118.92(2)°; V=2147.06 A°~3. Z=1, R=0.099。对环戊二烯基轻稀土氯化物的稳定性进行了较详细地讨论。结果表明,THF的用量和化合物的溶解度是影响产物组成的决定因素。当THF的量不足以溶解所生成的产物时,就会歧化成溶解度最大((C_5H_5)_3Ln·THF)和最小(LnCl_3·nTHF)的两种组分。反之,环戊二烯基轻稀土化合物(Ln=La, Nd)中环戊二烯基的再分配反应就能顺利进行。经元素分析和结构测定,在((C_5H_5)_3Nd·THF)和NdCl_3·LiCl-THF溶液的反应体系中,偶然分离得到了[(η~5-C_5H_5)_4Nd_4(μ_4-o)(μ_2-Cl)_8] [Li(DMP)_2THF]_2这一不合常规的化合物,其晶体属于正交晶系,Pna2,空间群a=19.010(7), b=23.231(6), c=14.180(4); V=6261.91 A°~3。Z=4, R=0.054。说明在一定条件下,μ-氧桥键也起到了稳定分子结构的作用。推测了各类环戊二烯基轻稀土氯化物在THF中的合成反应机理,在LiCl存在的反应体系中Ln cl cl Li桥键能与环戊二烯基发生交换反应;在(C_5H_5)_3Ln·THF和LnCl_3·3THF的反应体系中,首先存在着LnCl_3分子之间的互相作用,因而易于形成双核或多核配合物。这类配合物以晶体形式析出时,易于发生结构上的变化,即化合物的结晶形态与溶液中的形态不一定相同。探索了环戊二烯基烯丙基稀土化合物新的合成方法。找到了真空加热脱水制备氯化稀土的最佳条件,其产物纯度在97%以上。通过加入Co_3O_4/Wo_3催化助燃剂的方法,提高了测定稀土有机化合物中碳含量的准确性。
Resumo:
本工作较系统地研究了聚苯胺(PAn)的合成、结构及性能。用红外光谱法及溶液~(13)C-NMR方法研究了本征态PAn的链结构。结果表明具有较高电导率样品的分子链上的芳环以1,4-取代结构为主,苯式单元与醌式单元以3:1的比例无规分布。在对本征态链结构的研究基础上,进一步对掺杂态PAn的FTIR、固体~(13)C-NMR、UV-VIS、Raman、ESR及XPS谱进行了讨论和指认。根据掺杂前后的谱图变化指出,质子酸掺杂发生在醌式结构的氮原子上,正电荷及电子的离域化导致苯式单元和醌式单元发生部分氧化还原反应,生成具有一定电荷分布的含有变体苯结构及变体醌结构的长共轭体系。通过宽线~1H-NMR及ESR方法,研究了PAn的电荷传递过程,指出带有自旋的电子是导电的载流子,它通过Heisenberg交换方式在分子链内传递。分子链间的传递在其导电过程中起了重要作用。采用I_2、MoCl_5及BF_3等氧化试剂对PAn进行掺杂,表明PAn可进行氧化还原掺杂,但所得电导率比质子酸掺杂的低,掺杂过程也与之不同。通过考察PAn在不同条件下的电化学行为并结合现场Raman光谱及现场ESR谱的研究,指出PAn循环伏安曲线上的峰1可解释为将纯苯式结构中近四分之一的苯环氧化为苯二胺双自由基结构的反应;峰3则可能是由峰1的氧化产物继续氧化为苯-醌交替结构的反应;峰2可能与在高电位氧化后的产物进一步水解所得到苯醌与对苯二酚的反应及阴离子的嵌入与脱嵌过程有关。还对PAn的结晶性、热稳定性和空气稳定性以及聚合过程中生成的副产物等方面作了一些研究。
Resumo:
部分水解高分子量聚丙烯酰胺(HPAM),因其稀溶液粘度很大,被广泛应用于三次采油中作为“活性水”驱油的粘度调节剂,以提高石油的采收率(EOR)。但HPAM的耐盐性、耐温性和贮存稳定性不好,如在电解质的水溶液中的粘度效应明显降低,这些缺点影响了它的使用效果。改性聚丙烯酰胺的合成是聚合物采油中的重要研究课题。我们合成和表征了端丙烯酰胺基聚(β-胺基丙酸)(AMPAE)和2-丙烯酰胺基十六烷磺酸(AMC _(11)S)两种新型共聚单体,并用无规共聚的方法获得了耐盐性、耐热性和贮存稳定性有不同程度改善的新型改性聚丙烯酰胺。1、端丙烯酰胺基聚(β-胺基丙酸)的合成和结构表征。在加有自由基阻聚剂的惰性溶剂中,以叔丁醇钠为引发剂可使丙烯酰胺发生氢转移聚合反应,合成新型大分子单体端丙烯酰胺基聚(β-胺基丙酸)对所合成的分子单体我们用~1H-NMR和IR进行了表征;用端基滴定法和~1H-NMR法测定了大分子单体的分子量;用~(13)C-NMR和NaoH水解法测定了大分子单体的支化度。2、2-丙烯酰胺基十六烷磺酸(AMC_(16)S)的合成和结构表征。丙烯腈、2-烯烃(L_5-L_(18))和发烟硫作用可合成N-烷基磺酸基取代的丙烯酰胺衍生物。我们用~1H-NMR谱可对1-正十六烯得到的产物进行了表征,确定了该化合物的明确结构式,并首次给出了该化合物的质谱图。酸值,溴值和元素分析的结果与所确定的结构式相符。3、丙烯酰胺、端丙烯酰胺基聚(β-胺基丙酸)和丙烯酸钠三元共聚物(AM-AMPAE-ANa)的合成。表征及其溶液性质。以硫酸亚铁/异丙苯过氧化氢氧化还原引发体系合成了不同组成的AM-AMPAE-ANa无规共聚物。经用乙醇:水(体积比) = 20:1的混合溶剂萃取纯制过的样品用IR、~1H-NMR进行了表征;通过~1H-NMR和滴定法测定了共聚的组成;用粘度法估算了共聚物的表观分子量。溶液性质的数据表明,该共聚物的耐盐性比HPAM的耐盐性有所改善,但在2% Nacl溶液中,它的耐温性能比HPAM的耐温性能差,该共聚物有着好的贮存稳定性。4、丙烯酰胺和2-丙烯酰胺基十六烷磺酸铵共聚物(AM-AMC_(16)SNH_4)的合成,表征及其溶液性质。以硫酸亚铁/异丙苯过氧化氢氧化还原引发体系合成了不同组成的AM-AMC_(16)SNH_4无规共聚物,经乙醇萃取纯制过的样品,用IR、~1H-NMR、~(13)C-NMR和元素分析进行了表征;通过样品的S和N元素的含量计算了共聚物的组成;用光散射法测定了共聚物在溶液中的表观分子量;用透射电镜观察了共聚物在不同溶剂中的形态。实验结果表明,共聚物分子在水溶液中存在着一定程度的疏水基因间的缔合作用。溶液性质的数据可以看出,AM-AMC_(16)SNH_4共聚物有着很高的粘度盐水保留值(BR)且有着良好的耐温性和贮存稳定性,是一种性能较好的新型改性聚丙烯酰胺。
Resumo:
本文用pH电位滴定法测定了以Pb(II)、Cd(II)为中心离子,以氮杂芳香碱2,2'-联吡啶、邻二氮菲为第一配体,以“氧-氧”型和“氧-氮”型配位的丁二酸,邻苯二甲酸,4-硝荃苯二甲酸和甘氮酸、苯荃丙氨酸为第二配体,在温度为25 ℃,离子强度为0.1(KNO_3)条件下16个混配配合物体系的稳定常数及所有配体的酸解离常数和单配体配合物稳定常数。为了进一步探索混配配合物额外稳定性的根源,我们又测定了其中8个混配配合物在温度为15 ℃、35 ℃、45 ℃时的稳定常数,同时测定了各有关配体和单配体配合物在该温度范围内的酸解离常数和稳定常数。应用温度系数法求出了上述8个混配配合物各形成反应的热力学函数值。从各个方面讨论了这些混配配合物额外稳定性的原因,并提出了我们认为混配配合物额外稳定性的原因,并提出了我们认为混配配合物额外稳定性的合理表征。对一些混配配合物分子内可能存在配体间疏水缔合作用,通过~1H NMR的研究得到证实。
Resumo:
本工作用无水SmCl_3和YbCl_3每二摩尔比的叔丁基环戊二烯基钠在四氢呋喃中反应,合成了二(叔丁基环戊二烯基稀土氧化物(t-C_4H_9C_5H_4)_2Sm(DME)和(t-C_4H_9C_5H_4)_2YbCl(THF),配合物得到元素分析及~1H-NMR的鉴定。通过(t-C_4H_9C_5H_4)_2SmCl(DME)和(t-C_4H_9C_5H_4)_2YbCl(THF)分别每金属钠在四氢呋喃中的还原反应,分离得到了相应的二价稀土络合物(t-C_4H_9C_5H_4)_2Sm(DME)和(t-C_4H_9C_5H_4)_2Yb(THF)_2。络合物经元素分析,~1H-NMR鉴定,并通过对络合物具有弯曲的夹心式结构,中心金属离子Yb~(2+)除每两个五元环络合外,还与两个THF的氧配位,形成稳定的8配位结构。本工作还研究了二价络合物(t-C_4H_9C_5H_4)_2Sm(DME)的还原性,并通过(t-C_4H_9C_5H_4)_2Sm(DME)每phc≡CH在甲苯中反应,证明了(t-C_4H_9C_5H_4)_2Sm(DME)具有很强的还原性,能每phC≡CH发生单电子转移反应,从此瓜体系中分离得到了一个新的三价Sm~(3+)络俣物[(t-C_4H_9C_5H_4)_2Sm(u-C≡Cph)]_2。经X光单晶结构的鉴定,证明此络合物具有双分子结构,中心金属离子Sm~(3+)除了与两个叔丁基环戊二烯基负离子络合外,还与两个桥炔配位,构成八配位的结构。二价Yb~(2+)络合物(t-C_4H_9C_5H_4)_2Yb(THF)_2能与三苯氧膦在甲苯溶液中反应,发生配体交换,使络合物中的一个THF分子被三苯氧膦取代,得到(t-C_4H_9C_5H_4)_2Yb(opph_3)(THF)。此外,我们还研究了(C_tMe)_2Nd(u-Cl)_2Na(DME)_2与甲基萘钠在溶剂DME中的反应,结果表明,在这一体系中,发生了甲基萘钠对溶剂分子CH_3OCH_2CH_2OCH_3中CH_3-O键的断裂反应断裂反应产生的CH_3ONa能与(C_5Me_5)_2Nd(u-Cl)_2Na(DME)_2发生交换反应得到(C_5Me_5)_2Nd(u-Cl)_2Na(DME)_2。络合物经元素分析,水解色质(GC-MC)谱及~1H-NMR鉴定,并通过X光单晶结构的测定证明具有弯曲夹心式结构。
Resumo:
本文选择不同配体(苯酚类和迭氮)通过Cr(III)(TPP)Cl (Al)的氧化还原取代,分别合成了四个新的铬(III)卟啉配合物,Cr(TPP)N_3P_Y(B_1), P-O_2NC_6H_4OCr(TPP)·THF (C1), P-CH_3OCoH_4OCr(TPP)·THF (D1), Cr(TPP)OC_6H_5·THF (E1)。通过元素分析,红外光谱、~1H NMR、ESR、MS和UV-Vis等分析、表征,确认了以上四种化合物。B1单晶进行了X-射线分析,得其晶体结构和分子结构,从而进一步证实了B1的组成。在CH_2Cl_2或C_6H_6中,氮气保护下,用PhIO直接氧化以上五种铬(III)卟啉配合物,合成并分离出了相应的高价氧络铬卟啉配合物,(PhI) O=Cr(▽)(TPP)Cl (A2), (PhI) O=Cr(▽)(TPP)N_3, (B2), P-O_2NC_6H_4O Cr(▽)(TPP) (1/2IPh) (C2), P-CH_3OC_6H_4O Cr(▽)(TPP) (1/2IPh) (D2), PhIO- Cr(IV)(TPP) (OC_6H_5)·P_Y (E2)。通过研究其元素组成,IR、UV-Vis、ESR、MS等分析,确定了以上五种化合物的组成。基中PhI和P_Y分子的位置尚无法确定。这两类高价氧络铬卟啉,是继右淑珍等第一次得到P450模型化合物的活性中间体-氧络铬(▽)四苯基卟啉对硝基苯甲酸配合物后,又一次得到的苯酸类和迭氮氧络铬卟啉配合物。不同的是,氧络铬(▽)卟啉配合物中都各有PhI分子,化合物E2是第一次得到的关键氧络铬(IV)卟啉配合物,类似于PhIO-Mn~(IV)(TPP)(P-H_2N C_6H_4 CO_2)。高价氧络铬卟啉配合物不稳定,室温下分解,暴露在空气中同时发生分解和还原。不过低温下比较稳定。在CH_2Cl_2或C_6H_6中,我们研究了上述五种氧络铬及Cr(TPP)ClPhIO对碳氢化合物和DNA碱基的氧化反应。不同摩尔比的PhIO-Cr(TPP)Cl对环已烷的氧化给出相同的产物,但转化率和产物分布不同。Al-PhIO和C_2-PhIO体内对碱基胞嘧啶,胸腺嘧啶,腺嘌呤的氧化反应呈阳性,氧化产物中都有尿素CO(NH_2)_2,其中胸腺嘧啶的氧化产物中含有CH_3CO-或CH_3CHOH。这说明氧络铬卟啉配合物能够氧化DNA碱基。氧络铬卟啉具有较高的氧化活性和立体选择性。比较不同轴向配体的氧络铬卟啉的氧化活性,其大小次序正好与其轴向配体的配位能力次序一致。这是由于轴向配体的给电子能力越强,通过中心离子铬向其周围转移的电荷就越多,导致氧络键的强度减弱,即其活性增加。上述研究结果表明,铬(III)卟啉配合物是P-450的较好的模型化合物,氧络铬卟啉配合物是其活性中间体。同时该研究结果支持了Groves等提出的定居卟啉配合物催化氧化机理。