94 resultados para Shallow Seagrass
Resumo:
The spatial pattern of the small fish community was studied seasonally in 1996 in the Biandantang Lake. Based on plant cover, the lake was divided into five habitats, arranged in the order by plant structure complexity from complex to simple: Vallisneria spiralis habitat (V habitat), Vallisneria spiralis-Myriophyllum spicatum habitat (V-M habitat), Myriophyllum spicatum habitat (M habitat), Nelunbo nucefera habitat (N habitat), and no vegetation habitat (NV habitat). A modified popnet was used for quantitative sampling of small fishes. A total of 16 fish species were collected; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva, Carassius auratus and Paracheilognathus imberis were the five numerically dominant species. In both summer and autumn, the total density of small fishes was about 10 ind m(-2). Generally, Ctenogobius giurinus, a sedatory, benthic fish, was distributed more or less evenly among the five habitats, while the other four species had lower densities in the N habitat and NV habitat, which had the simplest structures. The distribution of the small fish species showed seasonal variations. In winter, most species concentrated in the V habitat, which had the most complex structure. In spring, the fish had low densities in the N and NV habitat, and were more or less evenly distributed in the other habitats. In summer, the fish had a low density in the NV habitat, and were evenly distributed in the other habitats. In autumn, the fish had higher densities in the V-M and M habitats than in the others. Generally, spatial overlaps between the dominant species were higher in winter than in the other seasons. It was suggested that the variations in the importance of predation risk and resource competition in habitat choice determined the seasonal changes of spatial patterns in the small fishes in the Biandantang Lake.
Resumo:
From surveys made in 1962-1963, 1973-1974, 1979-1996 at two Stations in Lake Donghu, a shallow eutrophic water body near Wuhan, P. R. China, the authors, derive long-term changes in species composition, standing crop and body-size of planktonic crustaceans. The species number decreased from the 1960s to the 1990s. The cladocerans dropped from 46 (1960s) to 26 (1980s) to 13 (1990s); the copepods decreased from 14 (1960s) to 10 (1980s) to 7 (1990s). From the mid-1980s on, the dominant crustaceans also changed: Daphnia hyalina and D. carinata ssp. were replaced by Moina micrura and Diaphanosoma brachyurum at Stations 1 and 2, respectively; Cyclops vicinus replaced Mesocyclops leuckarti. Densities and biomass of Cladocera decreased markedly after 1987. Annual average densities and biomass of cladocerans were statistically differences between 1962-1986 and 1987-1996 (P < 0.01). Annual average densities of Daphnia (Station 1 + Station 2) were negatively correlated with fish yield. Since the 1980s, annual average body length of Cladocera and Calanoida decreased, while annual average body length of Cyclopoida increased. In the same years, average body length of copepods was lower during May-October than during January-April and November-December. A 12-yr data analysis showed annual average concentration of chlorophyll-a (Chl-a) to be negatively correlated with annual average density of Daphnia, whilst lake transparency was positively correlated with annual average densities of Daphnia. The results imply that, since Daphnia feeds efficiently on phytoplankton, it could decrease concentration of Chl-a, and enhance water transparency.
Resumo:
Seasonal variation of the kinetic parameters of total alkaline phosphatase activity (APA) was studied in a shallow Chinese freshwater lake (Donghu Lake). At the three experimental stations the values of V-max of APA were higher and the negative correlation between orthophosphate and the total APA specific activity (V-max/Chl.) was stronger during summer (from June to September) P depletion. At the same time, the values of Michaelis constant (K-m) of APA at the three stations decreased. Phytoplankton seem to compensate for their phosphorus deficiency not only by an increase in enzyme production but also by an improved ability to use low substrate concentrations. (C) 1997 Elsevier Science Ltd.
Resumo:
Filtrable phosphorus compounds in a shallow Chinese freshwater lake (Donghu Lake) were fractionated by Sephadex G-25 gel-filtration chromatography. Some portions of those compounds released soluble reactive phosphorus upon irradiation with low dose ultraviolet light. Catalase and a hydroxyl radical scavenger (mannitol) markedly prevented photosensitive phosphorus release. The observed effects may be explained by the action of oxidizing reagents such as hydroxyl radicals, produced in photochemical reactions between UV irradiation and humic substances in the water. There was a strong seasonality in UV-sensitive P (UVSP) release. Michaels constants (K-m) of total alkaline phosphatase in the lake water showed a direct positive relation to UVSP. Plot of K-m against the UVSP/phosphomonoester ratio reveals a strong relationship between the two variables. These results suggest that in some situations UVSP may be a competitive inhibitor of alkaline phosphatase activity in the lake. The competitive inhibition of fractionated UVSP on alkaline phosphatase reagent (Sigma) apparently supports this hypothesis.
Resumo:
The seasonal dynamics in the nutrient concentrations, chlorophyll-a amount (Chl-a), total algal volume (CV), Chl-a/CV ratio, seston structure were studied at two sampling stations in a shallow, highly eutrophicated subtropic lake (the Guozheng Hu area of the East Lake) on the plain of the middle basin of the Chang Jiang (the Yangtze River) of China. The lake ecosystem of the Guozheng Hu area is dominated by two planktivorous fishes (silver carp and bighead carp), phytoplankton and zooplankton. Macrophytes are extremely scarce in this area. Concentrations of the total dissolved nitrogen and phosphorus in the Guozheng Hu area in 1990 were very high. Fish yield, of which, more than 90 % was composed of silver carp and bighead carp in the Guozheng Hu area was very high (ca. 1140 kg/ha or 45.6 g/m3 in 1990). Grazing pressure by the fishes on the plankton community is considered to be rather strong. The annual average biomass of zooplankton was ca. 1/3 - 1/2 that of phytoplankton. On the average, dry matter in the living plankton only constituted ca. 3-7 % of the total dry seston, and plankton carbon only constituted ca. 5 - 10 % of the seston carbon. The present results indicate that, in the Guozheng Hu area of the East Lake, of the organic part of the seston, detritus is quantitatively an important constituent, while living plankton is only a very small component.
Resumo:
Using first-principles band structure methods, we investigate the interactions between different donors in In2O3. Through the formation energy and transition energy level calculations, we find that an oxygen-vacancy creates a deep donor level, while an indium-interstitial or a tin-dopant induces a shallow donor level. The coupling between these donor levels gives rise to even shallower donor levels and leads to a significant reduction in their formation energies. Based on the analysis of the PBE0-corrected band structure and the molecular-orbital bonding diagram, we demonstrate these effects of donor-donor binding. In addition, total energy calculations show that these defect pairs tend to be more stable with respect to the isolated defects due to their negative binding energies. Thus, we may design shallow donor levels to enhance the electrical conductivity via the donor donor binding.
Resumo:
The intrinsic large electronegativity of O 2p character of the valence-band maximum (VBM) of ZnO renders it extremely difficult to be doped p type. We show from density functional calculation that such VBM characteristic can be altered by compensated donor-acceptor pairs, thus improve the p-type dopability. By incorporating (Ti+C) or (Zr+C) into ZnO simultaneously, a fully occupied impurity band that has the C 2p character is created above the VBM of host ZnO. Subsequent doping by N in ZnO: (Ti+C) and ZnO: (Zr+C) lead to the acceptor ionization energies of 0.18 and 0.13 eV, respectively, which is about 200 meV lower than it is in pure ZnO.
Resumo:
p-type doping is a great challenge for the full utilization of ZnO as short-wavelength optoelectronic material. Due to a large electronegative characteristic of oxygen, the ionization energy of acceptors in ZnO is usually too high. By analyzing the defect wave-function character, we propose several approaches to lower the acceptor ionization energy by codoping acceptors with donor or isovalent atoms. Using the first-principles band-structure method, we show that the acceptor transition energies of V-Zn-O-O can be reduced by introducing F-O next to V-Zn to reduce electronic potential, whereas the acceptor transition energy of N-O-nZn(Zn) (n=1-4) can be reduced if we replace Zn by isovalent Mg or Be to reduce the anion and cation kinetic p-d repulsion, as well as the electronic potential.
Resumo:
Fe-doped semi-insulating (SI) InP has become semi-conducting (SC) material completely after annealing at 900 V for 10 hours. Defects in the SC and SI InP materials have been studied by deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) respectively. The DLTS only detected Fe acceptor related deep level defect with significant concentration, suggesting the formation of a high concentration of shallow donor in the SC-InP TSC results confirmed the nonexistence of deep level defects in the annealed SI-InP. The results demonstrate a significant influence of the thermally induced defects on the electrical properties of SI-InP. The formation mechanism and the nature of the shallow donor defect have been discussed based on the results.
Resumo:
An extension of Faulkner's method for the energy levels of the shallow donor in silicon and germanium at zero field is made in order to investigate the effects of a magnetic field upon the excited states. The effective-mass Hamiltonian matrix elements of an electron bound to a donor center and subjected to a magnetic field B, which involves both the linear and quadratic terms of magnetic field, are expressed analytically and matrices are solved numerically. The photothermal ionization spectroscopy of phosphorus in ultrapure silicon for magnetic fields parallel to the [1,0,0] and [1,1,1] directions and up to 10 T is explained successfully.