134 resultados para Semiconducting II-VI materials
Resumo:
A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.
Resumo:
The crystallographic tilt of the lateral epitaxial overgrown (LEO) GaN on sapphire Substrate with SiNx mask is investiaated by double crystal X-ray diffraction. Two wing peaks beside the GaN 0002 peak can be observed for the as-grown LEO GaN. During the selective etching of SiNx mask, each wing peak splits into two peaks, one of which disappears as the mask is removed, while the other remains unchanged. This indicates that the crystallographic tilt of the overgrown region is caused not only by the plastic deformation resulted from the bending of threading dislocations, but by the non-uniformity elastic deformation related with the GaN, SiNx interfacial forces. The widths of these two peaks are also studied in this paper. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A high density of 1.02 x 10(11) cm(-2) of InAs islands with In(0.15)Gao(0.85)As underlying layer has been achieved on GaAs (10 0) substrate by solid source molecular beam epitaxy. Atomic force microscopy and PL spectra show the size evolution of InAs islands. A 1.3 mum photoluminescence (PL) from InAs islands with In(0.15)Gao(0.85)As underlying layer and InGaAs strain-reduced layer has been obtained. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Optical and electrical properties of ZnSe self-organized quantum dots were investigated using photoluminescence, capacitance-voltage, and deep level transient Fourier spectroscopy techniques. The temperature dependence of photoluminescence was employed to clarify the mechanism of photoluminescence thermal quenching processes in ZnSe quantum dots. A theoretic fit on considering a two-step quenching processes well explained the experimental data. The apparent carrier concentration profile obtained from capacitance-voltage measurements exhibits an accumulation peak at the depth of about 100nm below the sample surface, which is in good agreement with the location of the quantum dot layer. The electronic ground state of ZnSe quantum dots is determined to be about 0.11 eV below the conduction band of ZnS, which is similar to that obtained by simulating the thermal quenching of ZnSe photoluminescence.
Resumo:
The surfactant effect of isoelectronic indium doping during metalorganic chemical vapor deposition growth of cubic GaN on GaAs (1 0 0) substrates was studied. Its influence on the optical properties and surface morphology was investigated by using room-temperature photoluminescence (PL) and atomic force microscopy. It is shown that the sample with small amount of In-doping has a narrower PL linewidth, and a smoother surface than undoped cubic GaN layers. A slight red shift of the near-band-edge emission peak was observed. These results revealed that, for small TMIn flow rates, indium played the role of the surfactant doping and effectively improved the cubic GaN film quality; for large TMIn flow rates, the alloying formation of Ga1-xInxN might have occurred. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this study, we first present the process of the melt epitaxial (ME) growth method, and the improvement of low-temperature electron mobility of the long-wavelength InAsSb epilayers grown by ME in a fused silica boat. The electrical properties were investigated by van der Pauw measurement at 300 and 77 K. It is seen that the electron mobility of the InAsSb samples grown by graphite boat decreased from 55,700 to 26,600 cm(2)/V s when the temperature was reduced from 300 to 77 K, while for the samples grown by fused silica boat, the electron mobility increased from 52,600 at 300 K to 54,400 cm(2)/V s at 77 K. The electron mobility of 54,400cm(2)/Vs is the best result, so far, for the InAsSb materials with cutoff wavelength of 8-12 mum at 77 K. This may be attributed to the reduction of the carbon contamination by using a fused silica boat instead of a graphite boat. (C) 2002 Elsevier Science B.V. All rights reserved.
Photoluminescence of AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer
Resumo:
The photoluminescence spectra of the single delta -doped AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer were studied. There are two peaks in the PL spectra of the structure corresponding to two sub-energy levels of the InGaAs quantum well. It was found that the photoluminescence intensity ratio of the two peaks changes with the spacer thickness of the pseudomorphic HEMTs. The reasons were discussed. The possible use of this phenomenon in optimization of pseudomorphic HEMTs was also proposed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
The distribution of mixed phases and its dependence on the polarity of cubic GaN epilayers are investigated by conventional X-ray pole figure and grazing incident diffraction (GID) pole figure. The hexagonal inclusions and cubic twins can be classified into two portions: one is formed with strict crystalline orientations, the other with crystalline misorientations. The former can be measured by conventional pole figures which reveal that the density of lamellate hexagonal grains and cubic twins located on (1 1 1)(Ga) and ((1) over bar (1) over bar1)(Ga) along [1 (1) over bar 0] direction are higher than those on ((1) over bar 1 1), and (1 (1) over bar 1)(N) along [110] direction. However, the low signals from tiny mixed phases with crystalline misorientations, detected by GID pole figures, distribute in a larger phi region near the [1 1 0] and [(1) over bar (1) over bar 0] directions with much weaker intensity, and in a smaller phi region near the [1 (1) over bar 0] and [(1) over bar 1 0] directions with slightly stronger intensity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.
Resumo:
We report the effect of InchiGa1-chiAs (0 less than or equal to chi less than or equal to0.4) capping layer on photoluminescence (PL) properties of 1.3 mum wavelength self-assembled InAs quantum islands, which are formed via depositing 3.5 monolayers (ML) InAs on GaAs (1 0 0) substrate by molecular beam epitaxy (MBE). Compared with the InchiGa1-chiAs capping layer containing a larger In mole fraction chi greater than or equal to0.2 and the GaAs capping layer (chi = 0), the InAs islands covered by the In0.1Ga0.9As layer show PL with lower emission energy, narrower full-width at half-maximum (FWHM), and quite stronger intensity. The PL peak energy and FWHM become more temperature dependent with the increase of In content in the InchiGa1-chiAs capping layer (chi greater than or equal to0.2), while the InAs islands covered by the In0.1Ga0.9As layer is much less temperature sensitive. In addition, the InAs islands covered by the In0.1Ga0.9As capping layer show room temperature PL wavelength at about 1.3 mum. (C) 2001 Published by Elsevier Science B.V.
Resumo:
InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrystalline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520 nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.