134 resultados para Planar array


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many efforts based on complete mitochondrial DNA (mtDNA) genomes have been made to depict the global mtDNA landscape, but the phylogeny of Indian macrohaplogroup M has not yet been resolved in detail. To fill this lacuna, we took the same strategy as in o

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical study on the electron tunneling through a single barrier created in a two-dimensional electron gas (2DEG) and quantum spin Hall (QSH) bar in a HgTe/CdTe quantum well with inverted band structures. For the 2DEG, the transmission shows the Fabry-Perot resonances for the interband tunneling process and is blocked when the incident energy lies in the bulk gap of the barrier region. For the QSH bar, the transmission gap is reduced to the edge gap caused by the finite size effect. Instead, transmission dips appear due to the interference between the edge states and the bound states originated from the bulk states. Such a Fano-like resonance leads to a sharp dip in the transmission which can be observed experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field electron emission (FE) from an ultrathin multilayer planar cold cathode (UMPC) including a quantum well structure has been both experimentally and theoretically investigated. We found that by tuning the energy levels of UMPC, the FE characteristic can be evidently improved, which is unexplained by conventional FE mechanism. FE emission mechanism, dependent on the quantum structure effect, which supplies a favorable location of electron emission and enhances tunneling ability, has been presented to expound the notable amelioration. An approximate formula, brought forward, can predict the quantum FE enhancement, in which the theoretical prediction is close to the experimental result. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We designed a two-dimensional coupled photonic crystal resonator array with hexagonal lattice. The calculation by plane-wave-expansion method shows that the dispersion curve of coupled cavity modes in the bandgap are much flattened in all directions in the reciprocal space. We simulated the transmission spectra of transverse electric (TE) wave along the Gamma K direction. Compared with the PC single cavity structure, the transmission ratio of the coupled cavity array increases more than three orders of magnitude, while the group velocity decreases to below 1/10, reaching 0.007c. The slow wave effect has potential application in the field of miniaturized tunable optical delay components and low-threshold photonic crystal lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A free-standing, bidirectionally permeable and ultra-thin (500-1000 nm) porous anodic alumina membrane was fabricated using a two-step aluminium anodization process, which was then placed on top of a silicon film as an etching mask. The pattern was transferred to silicon using dry-etching technology, and the silicon nanopore array structure was formed. The factors which afflct the pattern transfer process are discussed. Observation of the nanopatterned sample under a scanning electron microscope shows that the structure obtained by this method is made up of uniform and highly ordered holes, which attains to 125 nm depth. The photoluminescence spectrum from the nanopatterned sample,the surface of which has been thermal-oxidized, shows that the the luminesce is evidently enhanced, the mechanism of which is based on the normally weak TO phonon assisted bandgap light-emission process, and the physical reasons that underlic the enhancement have been analyzed. The PL results do show an attractive optical characteristic, which provides a promising pathway to achieve efficient light emission from silicon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-quality Ge film was epitaxially grown on silicon on insulator using the ultrahigh vacuum chemical vapor deposition. In this paper, we demonstrated that the efficient 1 4 germanium-on-silicon p-i-n photodetector arrays with 1.0 mu m Ge film had a responsivity as high as 0.65 A/W at 1.31 mu m and 0.32 A/W at 1.55 mu m, respectively. The dark current density was about 0.75 mA/cm(2) at 0 V and 13.9 mA/cm(2) at 1.0 V reverse bias. The detectors with a diameter of 25 mu m were measured at 1550 nm incident light under 0 V bias, and the result showed that the 3-dB bandwidth is 2.48 GHz. At a reverse bias of 3 V, the bandwidth is about 13.3 GHz. The four devices showed a good consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-density and uniform well-aligned ZnO sub-micron rods are synthesized on the silicon substrate over a large area. The morphology, and structure of the ZnO sub-micron rods are investigated by x-ray diffraction, transmission electron microscopy and Raman spectra. It is found that the ZnO sub-micron rods are of high crystal quality with the diameter in the range of 400-600 nm and the length of several micrometres long. The optical properties were studied bill photoluminescence spectra. The results show that the intensity of the ultraviolet emission at 3.3 eV is rather high, meanwhile the deep level transition centred at about 2.38 eV is weak. The free exciton emission could also be observed at low, temperature, which implies the high optical quality of the ZnO sub-micron rods. This growth technique provides one effective way to fabricate the high crystal quality ZnO nanowires array, which is very important for potential applications in the new-type optoelectronic nanodevices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar graphite has been extensively studied by Raman scattering for years. A comparative Raman study of several different and less common non-planar graphitic materials is given here. New kinds of graphite whiskers and tubular graphite cones (synthetic and natural) have been introduced. Raman spectroscopy has been applied to the characterization of natural graphite crystal edge planes, an individual graphite whisker graphite polyhedral crystals and tubular graphite cones. Almost all of the observed Raman modes were assigned according to the selection rules and the double-resonance Raman mechanism. The polarization properties related to the structural features, the line shape of the first-order dispersive mode and its combination modes, the frequency variation of some modes in different carbon materials and other unique Raman spectral features are discussed here in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

State-filling effects of the exciton in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array are observed by quantum dot array photolumineseence at a sample temperature of 77 K. The exciton emission at low excitation density is dominated by the radiative recombination of the states in the s shell and at high excitation density the emission mainly results from the radiative recombination of the exciton state in the p shell. The spectral interval between the states in the s and p shells is about 30-40 mcV. The time resolved photoluminescence shows that the decay time of exciton states in the p shell is longer than that of exciton states in the s shell, and the emission intensity of the exciton state in the p shell is superlinearly dependent on excitation density. Furthermore, electron-hole liquid in the quantum dot array is observed at 77 K, which is a much higher temperature than that in bulk. The emission peak of the. recombination, of electron-hole liquid has an about 200 meV redshift from the exciton fluorescence. Two excitation density-dependent emission peaks at 1.56 and 1.59 eV are observed, respectively, which result from quantum confinement effects in QDs. The emission intensity of electron-hole liquid is directly proportional to the cubic of excitation densities and its decay time decreases significantly at the high excitation density.