234 resultados para Opioid Dependence
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
Temperature dependences of the polarized Raman scattering spectra in the backscattering configuration of the nonpolar a-plane (or [11 (2) over bar0]-oriented) GaN thin film are analyzed in the range from 100 to 570 K. The nonpolar a-plane GaN film is grown on an r-plane [or (1 (1) over bar 02)-oriented] sapphire substrate by metal organic chemical vapor deposition. The spectral features of the Raman shifts, intensities, and linewidths of the active phonons modes A(1)(TO), E-1(TO), and E-2(high) are significantly revealed, and corresponding temperature coefficients are well deduced by the empirical relationships. With increasing the measurement temperature the Raman frequencies are substantially redshifted and the linewidths gradually broaden. The compressive-strain-free temperature for the nonpolar a-plane GaN film is found to be at about 400 K. Our studies will lead to a better understanding of the fundamental physical characteristics of the nonpolar GaN film. (c) 2007 American Institute of Physics.
Resumo:
The temperature dependence of silicon-on-insulator thermo-optic attenuators is analysed, which originates from the temperature dependence of characteristics of multimode interference. The attenuator depth and power consumption are independent of temperature while the insertion loss depends on the temperature heavily. The variation of the insertion loss decreases from 4.3 dB to 1 dB as the temperature increases from 273 K to 343 K.
Resumo:
Rutherford backscattering and channeling is combined with X-ray diffraction to study the depth dependence of crystalline quality in InN layers grown by metalorganic chemical vapor deposition on sapphire substrate. The poorest crystalline quality in InN layer is produced at the intermediate region over 100 nm away from the InN/sapphire interface. With increasing layer thickness the crystalline quality improves to a certain degree dependent on the growth temperature. The InN sample grown at 450 degrees C is found to be more homogeneous than the sample grown at 550 degrees C. The difference in the defect profile is explained by the temperature-dependent growth modes. The inhomogeneity of structural quality and related properties such as carrier concentration and strain field is possibly the reason to observe a high energy wing in PL spectrum of the InN sample grown at 550 degrees C. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
The mode edges of photonic crystal waveguide with triangular lattice based on a silicon-on-insulator slab are investigated by combination of the effective index method and two-dimensional plane wave expansion method. The variations of waveguide-mode edges with structure parameters of photonic crystal are deduced. When the ratio of the radius of air holes to the lattice constrant, r/Lambda, is fixed and the lattice constant of photonic crystal, Lambda, increases, the waveguide-mode edges shift to longer wavelengths. When Lambda is fixed and r/Lambda increases, the waveguide-mode edges shift to shorter wavelengths. Additionally, when r/Lambda and Lambda are both fixed, the radius of the two-row air holes adjacent to the waveguide increases, the waveguide-mode edges shift to shorter wavelengths.
Resumo:
The temperature and pressure dependences of band-edge photo luminescence from ZnO microrods have been investigated. The energy separation between the free exciton (FX) and its first order phonon replica (FX-1LO) decreases at a rate of k(B)T with increasing temperature. The intensity ratio of the FX-1LO to the bound exciton (BX) emission is found to decrease slightly with increasing pressure. All of the exciton emission peaks show a blue shift with increasing pressure. The pressure coefficient of the FX transition, longitudinal optical (LO) phonon energy, and binding energy of BX are estimated to be 21.4, 0.5, and 0.9 meV/GPa, respectively. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We grow InGaAs quantum dot (QD) at low growth rate with 70 times insertion of growth interruption in MBE system. It is found that because of the extreme growth condition, QDs exhibit a thick wetting layer, large QD height value and special surface morphology which is attributed to the enhanced adatom surface diffusion and In-segregation effect. Temperature dependence of photoluminescence measurement from surface QD shows that this kind of QD has good thermal stability which is explained in terms of the presence of surface oxide. The special distribution of QD may also play a role in this thermal character. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The biaxial piezospectroscopic coefficient (i.e., the rate of spectral shift with stress) of the electrostimulated near-band-gap luminescence of gallium nitride (GaN) was determined as Pi=-25.8 +/- 0.2 meV/GPa. A controlled biaxial stress field was applied on a hexagonal GaN film, epitaxially grown on (0001) sapphire using a ball-on-ring biaxial bending jig, and the spectral shift of the electrostimulated near-band-gap was measured in situ in the scanning electron microscope. This calibration method can be useful to overcome the lack of a bulk crystal of relatively large size for more conventional uniaxial bending calibrations, which has so far hampered the precise determination of the piezospectroscopic coefficient of GaN. The main source of error involved with the present calibration method is represented by the selection of appropriate values for the elastic stiffness constants of both film and substrate. The ball-on-ring calibration method can be generally applied to directly determine the biaxial-stress dependence of selected cathodoluminescence bands of epilayer/substrate materials without requiring separation of the film from the substrate. (c) 2006 American Institute of Physics.
Resumo:
Self-assembled InAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatomic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL). It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.
Resumo:
The converse effects of spin photocurrent and current induced spin polarization are experimentally demonstrated in a two-dimensional electron gas system with Rashba spin splitting. Their consistency with the strength of the Rashba coupling as measured for the same system from beating of the Shubnikov-de Haas oscillations reveals a unified picture for the spin photocurrent, current-induced spin-polarization, and spin-orbit coupling. In addition, the observed spectral inversion of the spin photocurrent indicates a system with dominating structure inversion asymmetry.
Resumo:
We investigate the chirality dependence of physical properties of nanotubes which are wrapped by the planar hexagonal lattice including graphite and boron nitride sheet, and reveal its symmetry origin. The observables under consideration are of scalar, vector, and tensor types. These exact chirality dependences obtained are useful to verify the experimental and numerical results and propose accurate empirical formulas. Some important features of physical quantities can also be extracted by considering the symmetry restrictions without complicated calculations.
Resumo:
The temperature dependence of the formation of nano-scale indium clusters in InAlGaN quaternary alloys, which are grown by metalorganic chemical vapour deposition on GaN/Si(111) epilayers, is investigated. Firm evidence is provided to support the existence of phase separation, or nano-scale In-rich clusters, by the combined results of high-resolution transmission electron microscopy (HRTEM), high-resolution x-ray diffraction (HRXRD) and micro-Raman spectra. The results of HRXRD and Raman spectra indicate that the degree of phase separation is strong and the number of In clusters in the InAlGaN layers on silicon substrate is higher at lower growth temperatures than that at higher growth temperatures, which limits the In and Al incorporated into the InAlGaN quaternary alloys. The detailed mechanism of luminescence in this system is studied by low temperature photoluminescence (LT-PL). We conclude that the ultraviolet (UV) emission observed in the quaternary InAlGaN alloys arises from the matrix of a random alloy, and the second emission peak in the blue-green region results from the nano-scale indium clusters.
Resumo:
We have observed an unusual temperature sensitivity of the photoluminescence (PL) peak energy for InAs quantum dots grown on InAs quantum wires (QDOWs) on InP substrate. The net temperature shift of PL wavelength of the QDOWs ranges from 0.8 to -4. angstrom/degrees C depending upon the Si doping concentration in the samples. This unusual temperature behavior can be mainly ascribed to the stress amplification in the QDOWs when the thermal strain is transferred from the surrounding InAs wires. This offers an opportunity for realizing quantum dot laser devices with a temperature insensitive lasing wavelength. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
With different implantation energies, nitrogen ions were implanted into SIMOX wafers in our work. And then the wafers were subsequently annealed to form separated by implantation of oxygen and nitrogen (SIMON) wafers. Secondary ion mass spectroscopy (SIMS) was used to observe the distribution of nitrogen and oxygen in the wafers. The result of electron paramagnetic resonance (EPR) was suggested by the dandling bonds densities in the wafers changed with N ions implantation energies. SIMON-based SIS capacitors were made. The results of the C-V test confirmed that the energy of nitrogen implantation affects the properties of the wafers, and the optimum implantation energy was determined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Defects in ZnO films grown by radio-frequency reactive magnetron sputtering under variable ratios between oxygen and argon gas have been investigated by using the monoenergetic positron beam technique. The dominate intrinsic defects in these ZnO samples are O vacancies (V-O) and Zn interstitials (Zn-i) when the oxygen fraction in the O-2/Ar feed gas does not exceed 70% in the processing chamber. On the other hand, zinc vacancies are preponderant in the ZnO Elms fabricated in richer oxygen environment. The concentration of zinc vacancies increases with the increasing (2) fraction. For the oxygen fraction 85%, the number of zinc vacancies that could trap positrons will be smaller. It is speculated that some unknown defects could shield zinc vacancies. The concentration of zinc vacancies in the ZnO films varies with the oxygen fraction in the growth chamber, which is in agreement with the results of photoluminescence spectra.