126 resultados para Moyen-âge
Resumo:
Using solid-phase regrowth technique, Pd/Ge contact has been made on the GaN layer, and very good ohmic behavior was observed for the contact. The Photoluminescence (PL) spectra for different structures formed by the Pd/Ge contact, GaN layer, sapphire substrate, and mirror were studied, and a defect-assisted transition was found at 450 nm related to Ge impurity. The results show that the microcavity effect strongly influences the PL spectra of the band-gap and defect-assisted transitions.
Resumo:
Photoluminescence from gas-evaporated Ge nanoclusters consisting of a crystalline core encased in an oxide shell are presented. An as-grown sample shows room temperature luminescence with separate peaks around 357 and 580 nm. Prolonged air exposure of the clusters reduces the Ge core dimensions, and the emission initially at 580 nm shifts to 420 nm; however, the violet luminescence at 357 nm displays no difference. These results indicate that there are two mechanisms involved with light emission from Ge nanoclusters, visible light emission associated with the quantum confinement effect, and violet light emission correlated to luminescent centers. (C) 1998 Elsevier Science B.V.
Resumo:
A Sb-mediated growth technique is developed to deposit Ge quantum dots (QDs) of small size, high density, and foe of dislocations. These QDs were grown at low growth temperature by molecular beam epitaxy. The photoluminescence and absorption properties of these Ge QDs suggest an indirect-to-direct conversion, which is in good agreement with a theoretical calculation. (C) 1998 American Institute of Physics. [S0003-6951(98)00420-3].
Resumo:
Small-size, high-density, and vertical-ordering Ge quantum dots are observed in strained Si/Ge short-period superlattices grown on Si(001) at low growth temperature by molecular-beam epitaxy. The photoluminescence (PL) peak position, the strong PL at room temperature, and the high exciton binding energy suggest an indirect-to-direct conversion of the Ge quantum dots. This conversion is in good agreement with the theoretical prediction. The characteristic of absorption directly indicates this conversion. The tunneling of carriers between these quantum dots is also observed. [S0163-1829(98)03515-2].
Resumo:
Visible photoluminescence (PL) and Raman spectra of Ge clusters embedded in porous silicon (PS) have been studied. The as-prepared sample shows redshifted and enhanced room temperature PL relative to reference PS. This result can be explained by the quantum confinement effect on excitons in Ge clusters and tunnel of excitons from Si units of the PS skeleton to Ge clusters. One year storage in dry air results in a pronounced decrease in PL intensity but blue-shifted in contrast to reference PS. This phenomenon correlates to the size decrease of macerated Ce clusters and occurrence of "quantum depletion" in Ge clusters. Consequently, only excitons in Si units contribute to PL. (C) 1998 American Institute of Physics.
Resumo:
A Ge layer with a pitting surface can be obtained when the growth temperature is lowered to 290 degrees C. On the low temperature Ge buffer layer with pits, high quality Ge layer was grown at 600 degrees C with a threading dislocation density of similar to 1x10(5)cm(-2). According to channeling and random Rutherford backscattering spectrometry spectra, a chi(min) value of 10% and 3.9% was found, respectively, at the Ge/Si interface and immediately under the surface peak. The root-mean-square surface roughness of Ge film was 0.33nm.
Resumo:
Self-assembly Ge quantum dots (QD) on Si and Si/Ge mutli-quantum-wells (MQW) are grown by MBE. The island size and island density was investigated by atomics force microscopy. Ten-layer and twenty-layer MQW were selected for photodiode device fabrication. In photoluminescence (PL), a broad peak around 1.55-mu m wavelength was observed with higher peak intensity for the 10-layer MQW which had less defects than the 20-layer sample. Resonant cavity enhanced (RCE) photodiodes were fabricated by bonding on a SOI wafer. Selected responsivity at 1.55 mu m was successfully demonstrated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The high quality Ge islands material with 1.55 mu m photo-response grown on Sol substrate is reported. Due to the modulation of the cavity formed by the mirrors at the surface and the buried SiO2 interface, seven sharp and strong peaks with narrow linewidth are found. And a 1.55 mu m Ge islands resonant-cavity-enhanced (RCE) detector with narrowband was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching, in a basic solution from the backside of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mu m. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement.
Resumo:
X-ray photoelectron spectroscopy has been used to measure the valence band offset (VBO) at the GaN/Ge heterostructure interface. The VBO is directly determined to be 1.13 +/- 0.19 eV, according to the relationship between the conduction band offset Delta E-C and the valence band offset Delta E-V : Delta E-C = E-g(GaN) - E-g(Ge) - Delta E-V, and taking the room-temperature band-gaps as 3.4 and 0.67 eV for GaN and Ge, respectively. The conduction band offset is deduced to be 1.6 +/- 0.19 eV, which indicates a type-I band alignment for GaN/Ge. Accurate determination of the valence and conduction band offsets is important for the use of GaN/Ge based devices.
Space-selective precipitation of Ge crystalline patterns in glasses by femtosecond laser irradiation