94 resultados para Memory Consolidation
Resumo:
A time-varying controllable fault-tolerant field associative memory model and the realization algorithms are proposed. On the one hand, this model simulates the time-dependent changeability character of the fault-tolerant field of human brain's associative memory. On the other hand, fault-tolerant fields of the memory samples of the model can be controlled, and we can design proper fault-tolerant fields for memory samples at different time according to the essentiality of memory samples. Moreover, the model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. And the fault-tolerant fields of the memory samples are full of the whole real space R-n. The simulation shows that the model has the above characters and the speed of associative memory about the model is faster.
Resumo:
A design algorithm of an associative memory neural network is proposed. The benefit of this design algorithm is to make the designed associative memory model can implement the hoped situation. On the one hand, the designed model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. The result has improved the ones of some old associative memory neural network. On the other hand, the memory samples are in the centers of the fault-tolerant. In average significance the radius of the memory sample fault-tolerant field is maximum.
Resumo:
AlGaN/GaN npn heterojunction bipolar transistor structures were grown by low-pressure MOCVD. Secondary ion mass spectroscopy (SIMS) measurements were carried out to study the Mg memory effect and redistribution in the emitter-base junction. The results indicated that there is a Mg-rich film formed in the ongrowing layer after the Cp2Mg source is switched off. The Mg-rich film can be confined in the base section by switching off the Cp2Mg source for appropriate time before the end of base growth. Low temperature growth of the undoped GaN spacer suppresses the Mg redistribution from Mg rich film. The delay rate of the Mg profile in sample C with spacer growing in low temperature is about 56 nm/decade, which becomes sharper than 80 nm/decade of the samples A and B without low temperature spacer. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
This paper proposes an embedded ultra low power nonvolatile memory in a standard CMOS logic process. The memory adopts a bit cell based on the differential floating gate PMOS structure and a novel operating scheme. It can greatly improve the endurance and retention characteristic and make the area/bit smaller. A new high efficiency all-PMOS charge pump is designed to reduce the power consumption and to increase the power efficiency. It eliminates the body effect and can generate higher output voltage than conventional structures for a same stage number. A 32-bit prototype chip is fabricated in a 0.18 mu m 1P4M standard CMOS logic process and the core area is 0.06 mm(2). The measured results indicate that the typical write/erase time is 10ms. With a 700 kHz clock frequency, power consumption of the whole memory is 2.3 mu A for program and 1.2 mu A for read at a 1.6V power supply.
Resumo:
An ultra low power non-volatile memory is designed in a standard CMOS process for passive RFID tags. The memory can operate in a new low power operating scheme under a wide supply voltage and clock frequency range. In the charge pump circuit the threshold voltage effect of the switch transistor is almost eliminated and the pumping efficiency of the circuit is improved. An ultra low power 192-bit memory with a register array is implemented in a 0.18 mu M standard CMOS process. The measured results indicate that, for the supply voltage of 1.2 volts and the clock frequency of 780KHz, the current consumption of the memory is 1.8 mu A (3.6 mu A) at the read (write) rate of 1.3Mb/s (0.8Kb/s).
Resumo:
Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-06-07T01:33:41Z No. of bitstreams: 1 ApplPhysLett_96_213505.pdf: 1153920 bytes, checksum: 69931d8deb797813dd478b5dd0e292c0 (MD5)
Resumo:
Two photochromic fulgides, 2-{2-[4-(N,N-dimethylnilino)-5-methyl-4-oxazoly]}ethylidene-4-(1-methylethylidene) tetrahydrofuran-2,5-dione (A) and 3-(1,2-dimethyl-5-phenyl-3-pyrolloethylidene)-4-(1-methylethylidene)tetrahydrofuran-2,5-dione (B), doped in PMMA as candidates of dual-wavelength optical memory for parallel recording has been investigated. With 488 nm-laser and 650 nm-laser, both "cross" and "star" images are recorded on the fulgides-PMMA film and read out clearly, respectively. Crosstalk between two fulgides in PMMA matrix and nondestructive readout has also been explored. The results show that no significant cross-talk is detected between them, and nondestructive readout is up to 201 times. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
It is well known that the storage capacity may be large if all memory patterns are orthogonal to each other. In this paper, a clear description is given about the relation between the dimension N and the maximal number of orthogonal vectors with components +/-1, and also the conception of attractive index is proposed to estimate the basin of attraction. Theoretic analysis and computer simulation show that each memory pattern's basin of attraction contains at least one Hamming ball when the storage capacity is less than 0.33N which is better than usual 0.15 N.