103 resultados para Drop Size Distribution


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growth of InAs quantum dots on vicinal GaAs (100) Substrates was systematically studied using low-pressure metalorganic chemical vapor deposition (MOCVD). The dots showed a clear bimodal size distribution on vicinal substrates. The way of evolution of this bimodal size distribution was studied as a function of growth temperature, InAs layer thickness and InAs deposition rate. The optical properties of dots grown on vicinal substrates were also studied by photoluminescence (PL). It was found that, compared with dots on exact substrates, dots on vicinal substrates had better optical properties such as a narrower PL line width, a longer emission wavelength, and a larger PL intensity. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Passivation and low temperature method was carried out to grow InGaN/GaN quantum dots (QDs). Atomic force microscope observations were performed to investigate the evolution of the surface morphology of the InGaN QDs superlattices with increasing the superlattices layer number. The result shows that the size of the QDs increases with increasing superlattices layer number. The QDs height and diameter increase from 18 and 50 run for the monolayer InGaN QDs to 37 and 80 urn for the four-stacked InGaN QDs layers, respectively. This result is considered to be due to the stress field from the sub-layer dots. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Al-Mg and Al-Mg-Y alloys as raw materials and nitrogen as gas reactants, AIN powders and composite AIN powders by in-situ synthesis method were prepared. AIN lumps prepared by the nitriding of Al-Mg and Al-Mg-Y alloys have porous microstructure, which is favorable for pulverization. They have high purity, containing 1.23 % (mass fraction) oxygen impurity, and consisted of AIN single phase . The average particle size of AIN powders is 6.78 mum. Composite AlN powders consist of AlN phases and rare, earth oxide Y2O3 phase. The distribution of particle size of AIN powders shows two peaks. In view, of packing factor, AIN powders with such size distribution can easily be sintered to high density.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-growth rapid thermal annealing has been performed with In(Ga)As quantum dots (QDs) at different strain statuses. It is confirmed that the strain-enhanced interdiffusion decreases the inhomogeneous size distribution. The preferential lateral interdiffusion of QDs during annealing was observed. we attribute it to the naturally anisotropic strain distribution in/around the dots and the saturation of strain difference between the base boundary and the top of the dots. There exist strain-enhanced mechanism and vacancy diffusion enhanced mechanism during the annealing. As to which one dominates the QD interdiffusion depends on the thickness of capping layer and the annealing temperature. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Considering the complexity of the general plasma techniques, pure single CH3+ ion beams were selected for the deposition of hydrogenated amorphous (a) carbon films with various ion energies and temperatures. Photoluminescence (PL) measurements have been performed on the films and violet/blue emission has been observed. The violet/blue emission is attributed to the small size distribution of sp(2) clusters and is related to the intrinsic properties of CH3 terminals, which lead to a very high barrier for the photoexcited electrons. Ion bombardment plays an important role in the PL behavior. This would provide further insight into the growth dynamics of a-C:H films. (C) 2002 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the photoluminescence (PL) properties of InAs/GaAs self-assembled quantum dots (QDs) by varying excitation power and temperature. Excitation power-dependent PL shows that there exists bimodal size distribution in the QD ensemble. Thermal carrier redistribution between the two branches of dots is observed and investigated in terms of the temperature dependence of their relative PL intensity. Based on a model in which carrier transfer between dots is facilitated by the wetting layer, the experimental results are well explained. (C) 2001 American Institute of Physics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

InAs self-assembled quantum dots(QDs) covered by 3-nm-thick InxGa1-xAs(0 less than or equal tox less than or equal to0.3) capping layer have been grown on GaAs(100) substrate. Transmission electron microscopy shows that InGaAs layer reduces the strain in the InAs islands,and atomic force microscopy evidences the deposition of InGaAs on the top of InAs islands when x = 0.3.The significant redshift of the photoluminescence (PL) peak energy and the reduction of PL linewidth of InAs quantum dots covered by InGaAs are observed. In addition,InGaAs overgrowth layer suppresses the temperature sensitivity of PL peak energy. Based on our analysis, the strain-reduction and the size distribution of the InAs QDs are the main cause of the redshift and temperature insensitivity of the PL respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-assembled In0.9Ga0.1As, In0.9Al0.1As, and InAs quantum dots (QD) were fabricated in an InAlAs matrix lattice-matched to an InP substrate by molecular beam epitaxy. Preliminary characterizations were performed using transmission electron microscopy, photoluminescence, and reflection high-energy electron diffraction. Experimental results reveal clear differences in QD formation, size distribution, and luminescence between the InAs and In-0.9(Ga/Al)(0.1)As samples, which show the potential of introducing ternary compositions to adjust the structural and optical properties of QDs on an InP substrate. (C) 2000 American Institute of Physics. [S0021-8979(00)10213-0].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We propose a novel superluminescent diode (SLD) with a quantum dot (QD) active layer, which should give a wider output spectrum than a conventional quantum well SLD. The device makes use of inhomogeneous broadness of gain spectrum resulting from size inhomogeneity of self-assembled quantum dots grown by Stranski-Krastanow mode. Taking a design made out in the InxGa1-xAs/GaAs system for example, the spectrum characteristics of the device are simulated realistically, 100-200 nm full width of half maximum of output spectrum can be obtained. The dependence of the output spectrum on In composition, size distribution and injection current of the dots active region is also elaborated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uniform and high phosphorous doping has been demonstrated during Si growth by GSMBE using disilane and phosphine. The p-n diodes, which consist of a n-Si layer and a p-SiGe layer grown on Si substrate, show a normal I-V characteristic. A roughening transition during P-doped Si growth is found. Ex situ SEM results show that thinner film is specular. When the film becomes thicker, there are small pits of different sizes randomly distributed on the flat surface. The average pit size increases, the pit density decreases, and the size distribution is narrower for even thicker film. No extended defects are found at the substrate interface or in the epilayer. Possible causes for the morphological evolution are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocrystalline Ge embedded in SiOx matrix is fabricated by oxidizing hydrogenated amorphous Sice alloys or hydrogenated amorphous Si/hydrogenated amorphous Ge multilayers. The structures before and after oxidation are systematically investigated. Visible light emission was observed from both samples. The luminescence peak is located at 2.2 eV which is independent of the starting materials. Compared to the luminescence from unlayered samples, the photoluminescence spectrum from multilayered samples has a narrower band width, which can be attributed to the uniform size distribution. The light emission origin is also discussed briefly and a mechanism different from the quantum size effect is suggested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular beam epitaxy has been used for growing InGaAs self-assembled quantum dots (QDs) in InAlAs on an InP(001) substrate. Nominal deposition of 9.6 monolayers of In0.9Ga0.1As results in QDs of similar to 6.5 nm high with an areal density of 3.3 X 10(11) cm(-2). Conspicuous bimodal size distribution is identified, and is responsible for the observed QDs photoluminescence (PL) emission with two peaks at 0.627 and 0.657 eV. Good agreement is achieved between the observed PL peak energies and calculated results. (C) 1999 American Institute of Physics. [S00218979(99)00101-2].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.