273 resultados para Crystalline zinc gallate thin film
Resumo:
Indium-tin-oxide (ITO)/n-GaN Schottky contacts were prepared by e-beam evaporation at 200 degrees C under various partial pressures of oxygen. X-ray photoemission spectroscopy and positron beam measurements were employed to obtain chemical and structural information of the deposited ITO films. The results indicated that the observed variation in the reverse leakage current of the Schottky contact and the optical transmittance of the ITO films were strongly dependent on the quality of the ITO film. The high concentration of point defects at the ITO-GaN interface is suggested to be responsible for the large observed leakage current of the ITO/n-GaN Schottky contacts. (c) 2006 American Institute of Physics.
Resumo:
CeO2 thin film was fabricated by dual ion beam epitaxial technique. The violet/blue PL at room temperature and lower temperature was observed from the CeO2 thin film. After the analysis of crystal structure and valence in the compound was carried out by the XRD and XPS technique, it was inferred that the origin of CeO2 PL was due to the electrons transition from Ce4f band to O2p band and the defect level to O2p band. And these defects levels were located in the range of 1 eV around Ce4f band.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
A novel electroluminescence oxide phosphor (Gd2O3-Ga2O3):Ce has been prepared by electron beam evaporation. The emission peaks of photoluminescence lie at 390nm and a shoulder at 440nm. However, the electroluminescence of the (Gd2O3-Ga2O3):Ce thin film have four emission peaks at 358nm, 390nm, 439nm and 510nm, respectively. The optical absorption of (Gd2O3-Ga2O3):Ce thin film and the photoluminescence of composite materials with various ratios of Ga2O3/(Gd2O3+Ga2O3) have also been described to investigate the origin of emission of photoluminescence and electroluminescence.
Resumo:
The polyetherketone (PEK-c) guest-host system thin films in which the range of the weight percent of 3-(1,1-dicyanothenyl)-1-phenyl-4, 5- dihydro-1H-pryazole (DCNP) is from 20% to 50% were prepared. The predicted high value of electro-optical (EO) coefficient gamma(33) = 48.8 pm/V by using two-level model was obtained when the weight percent of DCNP in the polymer system is 40%, whereas EO coefficients are attenuated at higher chromophore loading then 40%. The temporal stability of the EO activity of the guest-host polymer was evaluated by probing the decay of the orientational order of the chromophores in the polymer system.
Resumo:
A detailed reaction-tran sport model was studied in a showerhead reactor for metal organic chemical vapor deposition of GaN film by using computational fluid dynamics simulation. It was found that flat flow lines without swirl are crucial to improve the uniformity of the film growth, and thin temperature gradient above the suscptor can increase the film deposition rate. By above-mentioned research, we can employ higher h (the distance from the susceptor to the inlet), P (operational pressure) and the rate of susceptor rotation to improve the film growth.
Resumo:
The magnetotransport properties of a nominally undoped InGaN thin film grown by metal-organic chemical vapor deposition were investigated. Resistivity was measured under a magnetic field up to 5 T over the temperature range of 3 to 298 K. The film exhibits a negative magnetoresistance at low temperatures. Its magnitude decreases with increasing temperature, and turns to be positive for temperatures above 100 K. The negative component was described by a model proposed by Khosla and Fischer for spin scattering of carriers in an impurity band. The positive part was attributed to the effect of Lorentz force on the carrier motion. Agreement between the model and the data is presented.
Resumo:
TiO2 sol-gels with various Ag/TiO2 molar ratios from 0 to 0.9% were used to fabricate silver-modified nano-structured TiO2 thin films using a layer-by-layer dip-coating (LLDC) technique. This technique allows obtaining TiO2 nano-structured thin films with a silver hierarchical configuration. The coating of pure TiO2 sol-gel and Ag-modified sol-gel was marked as T and A, respectively. According to the coating order and the nature of the TiO2 sol-gel, four types of the TiO2 thin films were constructed, and marked as AT (bottom layer was Ag modified, surface layer was pure TiO,), TA (bottom layer was pure TiO,, surface layer was Ag modified), TT (pure TiO, thin film) and AA (TiO, thin film was uniformly Ag modified). These thin films were characterized by means of linear sweep voltammetry (LSV), X-ray diffraction (XRD), scanning electron microscopy (SEM), electrochemical impedance spectroscopy and transient photocurrent (I-ph). LSV confirmed the existence of Ago state in the TiO, thin film. SEM and XRD experiments indicated that the sizes of the TiO,, nanoparticles of the resulting films were in the order of TT > AT > TA > AA, suggesting the gradient Ag distribution in the films. The SEM and XRD results also confirmed that Ag had an inhibition effect on the size growth of anatase nanoparticles. Photocatalytic activities of the resulting thin films were also evaluated in the photocatalytic degradation process of methyl orange. The preliminary results demonstrated the sequence of the photocatalytic activity of the resulting films was AT > TA > AA > TT. This suggested that the silver hierarchical configuration can be used to improve the photocatalytic activity of TiO2 thin film.
Resumo:
C-axis preferred oriented ZnO thin films were prepared on quartz substrates by RF sputtering. Photoconductive ultraviolet detector with planar interdigital electrodes was fabricated on ZnO thin film by the lift off technique. Linear I-V characteristic was observed under dark or 365 nm UV light illumination and has obvious difference. The photoresponsivity of 365 nm at 5 V bias is 18 A/W. The response time measure set mainly contains KrF excimer laser with the pulse width of 30 ns and the oscillograph with the bandwidth of 200 MHz. The result shows fast photoresponse with a rise time of 100 ns and fall time of 1.5 mu s. (c) 2005 Elsevier B.V. All rights reserved.