175 resultados para Atomic-sized contacts
Resumo:
The pressure behavior of Mn2+ emission in the 10-, 4.5-, 3.5-, 3-, and 1-nm-sized ZnS:Mn2+ nanoparticles is investigated. The emission shifts to lower energies with increasing pressure, and the shift rate (the absolute value of the pressure coefficient) is larger in the ZnS:Mn2+ nanoparticles than in bulk. The pressure coefficient increases with the decrease in particle size with the 1-nm-sized particles as an exception. Pressure coefficient calculations based on the crystal field theory are in agreement with the experimental results. The pressure dependence of the emission intensity is also size dependent. For nanoparticles 1 and 3 nm in size, the luminescence intensity of Mn2+ decreases dramatically with increasing pressure, while, for bulk and particles with average sizes of 3.5, 4.5, and 10 nm, the luminescence intensity of Mn2+ is virtually unchanged at different pressures. The bandwidth increases faster with increasing pressure for smaller particles. This is perhaps due to the fact that there are more Mn2+ ions at the near-surface sites and because the phonon frequency is greater for smaller particles. These new phenomena provide some insight into the luminescence behavior of Mn2+ in ZnS:Mn2+ nanoparticles.
Resumo:
The structural evolution and temperature dependence of the Schottky barrier heights of Pt contacts on n-GaN epilayer at various annealing temperatures were investigated extensively by Rutherford backscattering spectrometry, x-ray diffraction measurements, Auger electron spectroscopy, scanning electron microscopy and current-voltage measurements. The temperature dependence of the Schottky barrier heights may be attributed to changes of surface morphology of Pt films on the surface and variation of nonstoichiometric defects at the interface vicinity. Experimental results indicated the degradation of Pt contacts on n-GaN above 600 degreesC.
Resumo:
Atomic hydrogen assisted molecular beam epitaxy (MBE) is a novel type of epitaxial growth of nanostructures. The GaAs (311)A surface naturally forms one-dimensional step arrays by step bunching along the direction of (-233) and the space period is around 40nm. The step arrays extend over several mum without displacement. The InGaAs quantum wire arrays are grown on the step arrays as the basis. Our results may prompt further development of more uniform quantum wire and quantum dot arrays.
Resumo:
The reverse I(V) measurement and analytic calculation of the electron transport across a Ti/6H-SiC Schottky barrier are presented. Based on the consideration of the barrier fluctuations and the barrier height shift caused by image charge and the applied voltage drop across Ti/SiC interfical layer, a comprehensive analytical model for the reverse tunneling current is developed using a WKB calculation of the tunneling probability through a reverse biased Schottky barrier. This model takes into account the main reverse conduction mechanism, such as field emission, thermionic field emission and thermionic emission. The fact that the simulated results are in good agreement with the experimental data indicates that the barrier height shift and barrier fluctuation can lead to reverse current densities orders of magnitude higher than that obtained from a simple theory. It is shown that the field and thermionic field emission processes, in which carries can tunnel through the barrier but cannot surmount it with insufficient thermal energy, dominate the reverse characteristics of a SiC Schottky contacts in a normal working condition.
Resumo:
The Schottky behaviour of Ni/Au contact on n-GaN was investigated under various annealing conditions by current-voltage (I-V) measurements. A non-linear fitting method was used to extract the contact parameters from the I-V characteristic curves. Experimental results indicate that high quality Schottky contact with a barrier height and ideality factor of 0.86 +/- 0.02 eV and 1.19 +/- 0.02 eV, respectively, can be obtained under 5 min annealing at 600degreesC in N-2 ambience.
Resumo:
The excitation transfer processes in vertically self organized pairs of unequal-sized quantum dots (QD's), which are created in InAs/GaAs bilayers with different InAs deposition amounts in the first and second layers, have been investigated experimentally by photoluminescence technique. The distance between the two dot layers is varied from 3 to 12 nm. The optical properties of the formed pairs of unequal-sized QD's with clearly discernible ground-state transition energy depend on the spacer thickness. When the spacer layer of GaAs is thin enough, only one photoluminescence peak related to the large QD ensemble has been observed as a result of strong electronic coupling in the InAs QD pairs. The results provide evidence for nonresonant energy transfer from the smaller QDs in the second layer to the larger QD's in the first layer in such an asymmetric QD pair.
Resumo:
A constant amount of Ge was deposited on strained GexSi1-x layers of approximately the same thickness but with different alloy compositions, ranging from x = 0.06 to x = 0.19. From their atomic-force-microscopy images, we found that both the size and density of Ge islands increased with the Ge composition of the strained layer. By conservation of mass, this implies that these islands must incorporate material from the underlying strained layer. (C) 2000 American Institute of Physics. [S0003-6951(00)03529-4].
Resumo:
The electrical activity of defects in GaAs grown on GaAs substrates doped with Si and Be by both conventional molecular beam epitaxy (MBE) and atomic hydrogen-assisted MBE (H-MBE) were characterized by deep level transient spectroscopy. The trap densities are significantly reduced in the homoepitaxial GaAs grown by H-MBE compared to that grown by MBE. The reduction of trap densities is attributed to in situ passivation of these defects by atomic H during the growth. The improvement characteristics of GaAs materials will be significance for fabrication of semiconductor devices.
Resumo:
We have examined the influence of substrate surface orientation on self-assembled InAlAs/AlGaAs quantum dots grown on (0 0 1) and (n 1 1) A/B (n = 3, 5) GaAs substrates by molecular beam epitaxy (MBE). Preliminary characterizations have been performed using photoluminescence (PL) and transmission electron microscopy (TEM). The PL emission energies of quantum dots on high Miller index surface are found to be strongly dependent on the atomic-terminated surface (A or B surface) of the substrate. We observed that there were planar ordering larger islands on (3 1 1)B surface compared to (0 0 1) surface, in contrast, a rough interface and smaller "grains" on (3 1 1)A surface, this result is identical with PL emission energy from these islands. We propose that the rapid strain-induced surface "roughening" impedes the formation of 3D islands on A surface, and indicating that this is a promising approach of the realization of ordering distribution on (3 1 1)B plane for devices such as red-emitting semiconductor quantum dots lasers. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Atomic force microscopy and photoluminescence spectroscopy (PL) has been used to study asymmetric bilayer InAs quantum dot (QD) structures grow by molecular-beam epitaxy on GaAs (001) substrates. The two InAs layers were separated by a 7-nm-thick GaAs spacer layer and were grown at different substrate temperature. We took advantage of the intrinsic nonuniformity of the molecular beams to grow the seed layer with an average InAs coverage of 2.0 ML. Then the seed layer thickness could be divided into three areas: below, around and above the critical thickness of the 2D-3D transition along the 11101 direction of the substrate. Correspondingly, the nucleation mechanisms of the upper InAs layer (UIL) could be also divided into three areas: temperature-controlled, competition between temperature-controlled and strain-induced, and strain-induced (template-controlled) nucleation. Small quantum dots (QDs) with a large density around 5 x 10(10) cm(-2) are found in the temperature-controlled nucleation area. The QD size distributions undergo a bimodal to a unimodal transition with decreasing QD densities in the strain-induced nucleation area, where the QD densities vary following that of the seed layer (templating effect). The optimum QD density with the UIL thickness fixed at 2.4 ML is shown to be around 1.5 x 10(10) cm(-2), for which the QD size distribution is unimodal and PL emission peaks at the longest wavelength. The QDs in the in-between area exhibit a broad size distribution with small QDs and strain-induced large QDs coexisting.
Resumo:
We study the four-wave mixing (FWM) in an opening five-level system with two dressing fields. There are three kinds of doubly dressing mechanisms (parallel cascade, sequential cascade, and nested cascade) in the system for doubly dressed four-wave mixing. These mechanisms reflect different correlations between two dressing fields and different effects of two dressing fields to the FWM. Investigation of these mechanisms is helpful to understand the generated high-order nonlinear optical signal dressed by multi-fields.
Resumo:
The dressed four- and six-wave mixings in a V-type four-level system are considered. Under two different dressed conditions, two- and three-photon resonant Autler-Townes splittings, accompanied by enhancement and suppression of wave mixing signal, are obtained analytically. Meanwhile, an electromagnetic induced transparency of multi-wave mixing is presented, which shows multiple peaks and asymmetric effects caused by one-photon, two-photon and three-photon resonances, separately. The slow light propagation multiple region of multi-wave mixing signal is also obtained.