77 resultados para 100 pixels surface
Resumo:
Single-crystalline Si (100) samples were implanted with 30 keV He2+ ions to doses ranging from 2.0x10(16) to 2.0x10(17) ions/cm(2) and subsequently thermally annealed at 800 degrees C for 30min. The morphological change of the samples with the increase of implantation dose was investigated using atomic force microscopy (AFM). It was found that oblate-shaped blisters with an average height around 4.0nm were found on the 2.0 x 10(16) ions /cm(2) implanted sample surface; spherical-shaped blisters with an average height wound 10.0nm were found on the 5.0 x 10(16) ions/cm(2) implanted sample surface; strip-shaped and conical cracks were observed on the sample He-implanted to a dose of 1.0 X 10(17) ions /cm(2). Exfoliations occurred on the sample surface to a dose of 2.0 x10(17) ions /cm(2). Mechanisms underlying the surface change were discussed.
Resumo:
Nanohydroxyapatite (op-HA) surface-modified with L-lactic acid oligomer (LAc oligomer) was prepared by LAc oligomer grafted onto the hydroxyapatite (HA) surface. The nanocomposite of op-HA/PLGA with different op-HA contents of 5, 10, 20 and 40 wt.% in the composite was fabricated into three-dimensional scaffolds by the melt-molding and particulate leaching methods. PLGA and the nanocomposite of HA/PLGA with 10 wt.% of ungrafted hydroxyapatite were used as the controls. The scaffolds were highly porous with evenly distributed and interconnected pore structures, and the porosity was around 90%. Besides the macropores of 100-300 mu m created by the leaching of NaCl particles, the micropores (1-50 mu m) in the pore walls increased with increasing content of op-HA in the composites of op-HA/PLGA. The op-HA particles could disperse more uniformly than those of pure HA in PLGA matrix. The 20 wt.% op-HA/PLGA sample exhibited the maximum mechanical strength, including bending strength (4.14 MPa) and compressive strength (2.31 MPa). The cell viability and the areas of the attached osteoblasts on the films of 10 wt.% op-HA/PLGA and 20 wt.% op-HA/PLGA were evidently higher than those on the other composites.
Resumo:
The hydroxyapatite (HA) nanocrystals of 100-200 nm in length and 20-30 nm in width were hydrothermally synthesized by the reaction of phosphoric acid and calcium hydroxide. Lactic acid oligomer surface grafted HA(op-HA) nanoparticles were obtained by oligomeric lactic acid with a certain molecular weight grafting onto the HA surface to form a Ca carboxylate bond in the absence of any catalyst. The op-HA was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposite of op-HA/PLGA. FTIR, TGA, ESEM and EDX were used to analyze grafting reaction, the graft ratio of op-HA, surface topography and calcium deposition of the composites, respectively. The rabbit osteoblasts were seeded and cultured on the surface of composites in vitro. The cell morphology, adhesion, proliferation and gene expression were evaluated with FITC staining, NIH image J software and the analysis of real-time PCR, respectively. The results show that the graft ratio of op-HA is 8.3% (mass fraction). The op-HA/PLGA nanocomposite possessed more suitable surface properties, including roughness and plenty of calcium and phosphor. It exhibited better cell adhesion, spreading and proliferation of rabbit osteoblasts, compared to pure PLGA.
Resumo:
Our previous investigation showed that the ordered hexagonal island pattern in the phase-separating polymeric blend films of polystyrene and poly(2-vinylpyridine) (PS/P2VP) formed due to the convection effect by proper control of PS molecular weight, solvent evaporation rate, and the weight ratio of PS to P2VP. In this paper, we further illustrate that, by adding a proper amount of the surfactant Triton X-100 to the PS/P2VP toluene solution, the ordered hexagonal island pattern can be transformed to the ordered honeycomb pattern. The effects of the amount of Triton X-100 on the surface morphology evolution and the pattern transformation are discussed in terms of the collapse of Triton X-100, phase separation between Triton X-100/P2VP and PS, the interfacial interaction between Triton X-100/P2VP and the mica substrate, and the Benard-Marangoni convection.
Resumo:
To improve the mechanical properties of the composites of poly(lactide-co-glycolide) (PLGA, LA/GA = 80/20) and the carbonate hydroxyapatite (CHAP) particles, the rice-form or claviform CHAP particles with 30-40 nm in diameter and 100-200 nm in length were prepared by precipitation method. The uncalcined CHAP particles have a coarse surface with a lot of global protuberances, which could be in favor of the interaction of the matrix polymer to the CHAP particles. The nanocomposites of PLGA and surface grafted CHAP particles (g-CHAP) were prepared by solution mixing method. The structure and properties of the composites were subsequently investigated by the emission scanning electron microscopy, the tensile strength testing, and the cell culture. When the contents of g-CHAP were in the range of 2-15 wt %, the PLGA/g-CHAP nanocomposites exhibited an improved elongation at break and tensile strength. At the 2 wt % content of g-CHAP, the fracture strain was increased to 20%) from 4-5% for neat PLGA samples. Especially at g-CHAP content of 15 wt %, the tensile strength of PLGA/g-CHAP composite was about 20% higher than that of neat PLGA materials. The tensile moduli of composites were increased with the increasing of filler contents, so that the g-CHAP particles had both reinforcing and toughening effects on the PLGA composites. The results of biocompatibility test showed that the higher g-CHAP contents in PLGA composite facilitated the adhesion and proliferation properties of osteoblasts on the PLGA/g-CHAP composite film.
Resumo:
Surface-enhanced Raman scattering (SERS) activity of silver-gold bimetallic nanostructures (a mean diameter of similar to 100 nm) with hollow interiors was checked using p-aminothiophenol (p-ATP) as a probe molecule at both visible light (514.5 nm) and near-infrared (1064 nm) excitation. Evident Raman peaks of p-ATP were clearly observed, indicating the enhancement Raman scattering activity of the hollow nanostructure to p-ATP. The enhancement factors (EF) at the hollow nanostructures were obtained to be as large as (0.8 +/- 0.3)x10(6) and (2.7 +/- 0.5)x10(8) for 7a and 19b (b(2)) vibration mode, respectively, which was 30-40 times larger than that at silver nanoparticles with solid interiors at 514.5 nm excitation. EF values were also obtained at 1064 nm excitation for 7a and b(2)-type vibration mode, which were estimated to be as large as (1.0 +/- 0.3)x10(6) and (0.9 +/- 0.2)x10(7), respectively. The additional EF values by a factor of similar to 10 for b(2)-type band were assumed to be due to the chemical effect. Large electromagnetic EF values were presumed to derive from a strong localized plasmas electromagnetic field existed at the hollow nanostructures.
Resumo:
A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.
Resumo:
A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
Radiolarian distribution in surface sediments of 104 stations from northern and central South China Sea show that the abundance and diversity of radiolarians increase with the water depth and are related to radiolarian concentrations from the water column, diminished terrigenous input, variability in calcareous shell content and the rate of silica and carbonate dissolution in the deep sea. According to the appearances of individual species in surface sediments at particular depths, seven faunal boundaries distribution are recognized at water depths of 100, 450, 650, 1000, 1200, 1400 and 2500 m. Four radiolarian assemblages in the sediments were identified by applying clustering procedures. Geographic distributions of these four assemblages coincide with present-day hydrologic features of the surface waters in this area.
Resumo:
In this paper, the reactions of nitrone, N-methyl nitrone, N-phenyl nitrone and their hydroxylamine tautomers (vinyl-hydroxylamine, N-methyl-vinyl-hydroxylamine and N-phenyl-vinyl-hydroxylamine) on the reconstructed C(100)-2 x 1 surface have been investigated using hybrid density functional theory (B3LYP), Moller-Plesset second-order perturbation (MP2) and multi-configuration complete-active-space self-consistent-field (CASSCF) methods. The calculations showed that all the nitrones can react with the surface "dimer" via facile 1.3-dipolar cycloaddition with small activation barriers (less than 12.0 kJ/mol at B3LYP/6-31g(d) level). The [2+2] cycloaddition of hydroxylamine tautomers on the C(100) surface follows a diradical mechanism. Hydroxylamine tautomers first form diradical intermediates with the reconstructed C(I 00)-2 x I surface by overcoming a large activation barrier of 50-60 kJ/mol (B3LYP), then generate [2+2] cycloaddition products via diradical transition states with negligible activation barriers. The surface reactions result in hydroxyl or amino-terminated diamond surfaces, which offers new opportunity for further modifications. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Oxygen adsorption and desorption on a Pd(100) surface with a mesoscopic defect were studied by photoemission electron microscopy (PEEM). The defect surface, with an area of approximately 200 x 60 mu m(2), behaved differently from the perfect Pd(100) surface towards the adsorption of oxygen. When saturated, both surface oxygen and subsurface oxygen coexisted on the defect surface, whereas only surface oxygen was present on the Pd(100) surface. Upon heating, subsurface oxygen diffused back to the surface and desorbed with surface oxygen at the same time. The difference in oxygen adsorption ability between the defect surface and the perfect Pd(100) surface can be attributed to different structures of these two surfaces. (C) 1999 Elsevier Science B.V. All rights reserved.