117 resultados para traps
Resumo:
Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
Capacitance-voltage, photoluminescence (PL), and deep level transient spectroscopy techniques were used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular beam epitaxy. The integrated intensity of the PL spectra obtained from Al-doped ZnS0.977Te0.023 is lower than that of undoped ZnS0.977Te0.023, indicating that some of the Al atoms form nonradiative deep traps. Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x=0, 0.017, 0.04, and 0.046, respectively) epilayers reveal that Al doping leads to the formation of two electron traps 0.21 and 0.39 eV below the conduction band. DLTFS results suggest that in addition to the roles of Te as a component of the alloy as well as isoelectronic centers, Te is also involved in the formation of an electron trap, whose energy level with respect to the conduction band decreases as Te composition increases. Our results show that only a small fraction of Al atoms forms nonradiative deep defects, indicating clearly that Al is indeed a very good donor impurity for ZnS1-xTex epilayers in the range of Te composition being studied in this work. (C) 1997 American Institute of Physics. [S0021-8979(97)08421-1].
Resumo:
A broad absorption band around 500 nm is observed in ZnS nanoparticles. The absorption becomes more intensive and shifts to the blue as the particle size is decreased. The absorption energy is lower than the band gap of the particles and is considered to be caused by the surface states. This assignment is supported by the results of the fluorescence and of the thermoluminescence of the surface states. Both the absorption and the fluorescence reveal that the surface states are size dependent. The glow peak of the semiconductor particles is not varied as much upon decreasing size, indicating the trap depth of the surface states is not sensitive to the particle size. Considering these results, a new model on the size dependence of the surface states is proposed, which may explain our observations reasonably. (C) 1997 American Institute of Physics.
Resumo:
Thermoluminescence (TL) of CdS clusters encapsulated in zeolite-Y is reported for the first time. The TL of the clusters is much stronger than that of the bulk CdS and increases as the CdS loading decreases. This inverse dependence of TL intensity upon CdS loading is caused mainly by the size-effect of the clusters. All samples exhibit almost the same glow peak position and shape, indicating that traps or surface states are not sensitive to the cluster sizes.
Resumo:
The deep centers in AlGaAs/GaAs graded index-separate confinement heterostructure single quantum well (GRIN-SCHSQW) laser structures grown by MBE and MOCVD have been investigated using deep level transient spectroscopy (DLTS) technique, The majority and minority carrier DLTS spectra show that the deep (hole and electron) traps (Hi and E3), having large capture cross sections and concentrations, are observed in the graded n-AlxGa1-xAs layer of laser structures in addition to the well-known DX centers. For laser structures grown by MBE, the deep hole trap H1 and the deep electron trap E3 may be spatially localized in the interface regions of discontinuous variation Al mole fraction of the n-AlxGa1-xAs layer with x = 0.20-0.43. For laser structures grown by MOCVD, the deep electron trap E3 may be spatially localized in the n-AlxGa1-xAs layer with x = 0.18-0.30, and the DX center may be spatially localized in the interface regions of discontinuous variation Al mole fraction of the AlxGa1-xAs layer with x = 0.22-0.30.
Resumo:
The defect levels in Hg1-xCdxTe P+N junction photodiodes (x = 0.4) were first studied using deep-level transient spectroscopy. Two electron traps, E(1)(0.06) and E(2)(0.15), and two hole traps, H-1(0.075) and H-2(0.29), were obtained, Characteristic parameters-the minority lifetime of the devices and the dynamic resistance-area product at zero bias-are estimated according to these levels. Results show that these two minority levels may be important in controlling lifetime. We have studied the recombination mechanism of the hole trap H-2(0.29) further. It has a large activation energy and satisfies the formula sigma(T) = sigma(x) exp(-E(F)/E(T)). This reflects the fact that its recombination mechanism is multiphonon nonradiative recombination, which is rarely reported in narrow-bandgap materials.
Resumo:
High efficiency AlxGa1-xAs/GaAs heteroface solar cells have been fabricated by an improved multi-wafer squeezing graphite boat liquid phase epitaxy (LPE) technique, which enables simultaneous growth of twenty 2.3 X 2.3cm(2) epilayers in one run. A total area conversion efficiency of 17.33% is exhibited (1sun, AM0, 2.0 x 2.0cm(2)). The shallow junction cell shows more resistance to 1 MeV electron radiation than the deep one. After isochronal or isothermal annealing the density and the number of deep level traps induced by irradiation are reduced effectively for the solar cells with deep junction and bombardment under high electron fluences.
Resumo:
GaAs epilayers grown on Si by metalorganic chemical vapor deposition (MOCVD) using an ultrathin a-Si buffer layer were characterized by deep-level transient spectroscopy (DLTS). Six electron traps with activation energies of 0.79, 0.67, 0.61, 0.55, 0.53 and 0.32 eV below the conduction band were determined by fitting the experimental spectra. Two of the levels, C (0.61 eV) and F (0.32 eV), were first detected in GaAs epilayers on Si and identified as the metastable defects M3 and M4, respectively. In order to improve the quality of GaAs/Si epilayers, another GaAs layer was grown on the GaAs/Si epilayers grown using MOCVD. The deep levels in this regrown GaAs epilayer were also studied using DLTS. Only the EL2 level was found in the regrown GaAs epilayers. These results show that the quality of the GaAs epilayer was greatly improved by applying this growth process.
Resumo:
Current based microscopic defect analysis methods such as current deep level transient spectroscopy (I-DLTS) and thermally stimulated current (TSC) have been further developed in accordance with the need for the defect analysis of highly irradiated (Phi(n) > 10(13) n/cm(2)) high resistivity silicon detectors. The new I-DLTS/TSC system has a temperature range of 8 K less than or equal to T less than or equal to 450 K and a high sensitivity that can detect a defect concentration of less than 10(10)/cm(3) (background noise as low as 10 fA). A new filling method using different wavelength laser illumination has been applied, which is more efficient and suitable than the traditional voltage pulse filling. It has been found that the filling of a defect level depends on such factors as the total concentration of free carriers generated or injected, the penetration length of the laser (laser wavelength), the temperature at which the filling is taking place, as well as the decay time after the filling (but before the measurement). The mechanism of the defect filling can be explained by the competition between trapping and detrapping of defect levels, possible capture cross section temperature dependence, and interaction among various defect levels in terms of charge transferring. Optimum defect filling conditions have been suggested for highly irradiated high resistivity silicon detectors.
Resumo:
Radiation hardness of SIMOX(separation by implanted oxygen)/NMOSFET by implanting N and F ion has been carefully studied in this paper.Both N and F ion implantation can reduce hole traps in the buried oxide and the interfacial regions,which consequently improves the radiation hardness,especially under high dose radiation conditions.Moreover,experimental data show that the higher dose of the N and F ion implantation is,the better radiation hardness is achieved.In order to minimize the influence on the threshold voltage of devices,it is important to choose suitable implantation dose and energy of N or F implantation that have smaller impact on the preradiation device performance.
Resumo:
Semi-insulating (SI) InP wafers of 50 and 75mm in diameter can be obtained by annealing of undoped liquid encapsulated Czochralski (LEC) InP at 930 ℃ for 80h. The annealing ambient can be pure phosphorus (PP) or iron phosphide (IP). The IP-SI InP wafers have good electrical parameters and uniformity of whole wafer. However, PP-SI InP wafers exhibit poor uniformity and electrical parameters, Photoluminescence which is subtle to deep defect appears in IP-annealed semi-insulating InP. Traps in annealed SI InP are detected by the spectroscopy of photo-induced current transient. The results indicate that there are fewer traps in IP-annealed undoped SI InP than those in as-grown Fe-doped and PP-undoped SI-undoped SI InP. The formation mechanism of deep defects in annealed undoped InP is discussed.
Resumo:
Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.
Resumo:
Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.
Resumo:
Semi-insulating (SI) InP wafers of 2 and 3 in. diameters have been prepared by annealing undoped LEC InP at 930 degreesC for 80 h under pure phosphorus ambient (PP) and iron phosphide ambient (IP). The electrical uniformity of annealed undoped SI wafers, along with a Fe-doped as-grown SI LEC InP wafer, has been characterized by whole wafer PL mapping and radial Hall measurements. Defects in these wafers have been detected by photo-induced current transient spectroscopy (PICTS). The results indicated that the uniformity of IP wafer is much better than that of PP wafer and as-grown Fe-doped Si InP wafer. There are fewer traps in undoped SI InP IP wafer than in as grown Fe-doped and undoped SI InP PP wafer, as evidenced by PICTS. The good uniformity of the IP wafer is related to the nonexistence of high concentration of thermally induced defects. The mechanism for this phenomenon is discussed based on the results. (C) 2002 Elsevier Science B.V. All rights reserved.