57 resultados para surf oholak


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nb2O5 sculptured thin. films deposited by electron beam evaporation with glancing angle deposition were prepared. Nb2O5 sculptured thin. films with tilted columns are optical anisotropy. XRD, SEM, UV-vis-NIR spectra are employed to characterize the microstructure and optical properties. The maximum of birefringence (Delta n) is up to 0.045 at alpha = 70 degrees with packing density of 0.487. With increasing the deposition angle, refractive index and packing density of Nb2O5 STF are decreasing. The relationship among deposition parameter, microstructure and optical properties was investigated in detail. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study on the layer structure of W/C multilayers deposited by magnetron sputtering is reported. In the study, soft x-ray resonant reflectivity and hard x-ray grazing incidence reflectivity of the W/C multilayers were measured. The imperfections at the interface such as interdiffusion and formation of compounds were dealt with by two methods. On analyzing the experimental results, we found that the incorporation of an interlayer was a more suitable method than the traditional statistical method to describe the layer structure of a W/C system we fabricated. The optical constants of each layer at a wavelength of 4.48 nm were also obtained from the analysis. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HfO2 is one of the most important high refractive index materials for depositing high power optical mirrors. In this research, HfO2 thin films were prepared by dual-ion beam reactive sputtering method, and the laser-induced damage thresholds (LIDT) of the sample were measured in 1-on-1 mode for laser with 1064 nm wavelength. The results indicate that the LIDT of the as-grown sample is only 3.96 J/cm(2), but it is increased to 8.98 J/cm(2) after annealing under temperature of 200 degrees C in atmosphere. By measuring the laser weak absorption and SIMS of the samples, we deduced that substoichiometer is the main reason for the low LIDT of the as-grown sample, and the experiment results were well explained with the theory of electronic-avalanche ionization. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 single layers and TiO2/SiO2 high reflectors (HR) are prepared by electron beam evaporation at different TiO2 deposition rates. It is found that the changes of properties of TiO2 films with the increase of rate, such as the increase of refractive index and extinction coefficient and the decrease of physical thickness, lead to the spectrum shift and reflectivity bandwidth broadening of HR together with the increase of absorption and decrease of laser-induced damage threshold. The damages are found of different morphologies: a shallow pit to a seriously delaminated and deep crater, and the different amorphous-to-anatase-to-rutile phase transition processes detected by Raman study. The frequency shift of Raman vibration mode correlates with the strain in. film. Energy dispersive X-ray analysis reveals that impurities and non-stoichiometric defects are two absorption initiations resulting to the laser-induced transformation. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal stability of electron beam deposited TiO2 monolayers and TiO2/SiO2 high reflectors (HR) during 300 to 1100 degrees C annealing is studied. It is found that the optical loss of film increases with the increase in annealing temperature, due to the phase change, crystallisation and deoxidising of film. Scattering loss dominates the optical property degradation of film below 900 degrees C, while the absorption is another factor at 1100 degrees C. The increase in refractive index and decrease in physical thickness of TiO2 layer shift the spectra of HR above 900 degrees C. The possible crack mechanism on the surface of HR during annealing is discussed. Guidance for application on high temperature stable optical coatings is given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The well known 'crystal seed' theory is first applied in this work to prepare TiO2 film: a high refractive index rutile TiO2 film is grown by electron beam evaporation on the rutile seed formed by 1100 degrees C annealing. The average n is larger than 2.4, by far the highest in all the authors' TiO2 films. The films are characterised by optical properties, microstructure and surface morphologies. It is found that the refractive index shows positive relation with the crystal structure, grain size, and packing density and roughness of the film. The film has lower density of granularity and nodule defects on the surface than those of the film deposited by magnetron sputtering. The result shows attractive application in complex filter and laser coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have analyzed the propagation rate of the chemical waves observed during the course of CO oxidation on a Ag/Pt(I 10) composite surface that were reported in our previous papers [Surf Interface Anal. 2001, 32, 179; J. Phys. Chem. B 2002, 106, 5645]. In all cases, the propagation rate v can be adequately fitted as v = v(0) + D-0/d, in which v(0) and D-0 are constants, and d is the distance between the reaction front of the chemical wave and the boundary from which the chemical wave originates. We propose that the surface species responsible for the formation of the chemical wave comes from two paths: the adsorption of molecules in the gas phase on the surface and the migration from the adjacent surface with different catalytic activity. v(0) corresponds to the contribution from the surface species due to the adsorption, and D-0/d to that of the surface species that migrates from the adjacent surface. The rate equation clearly suggests that the observed chemical wave results from the coupling between adjacent surfaces with different catalytic activities during the course of heterogeneous catalysis. These results, together with our previous reports, provide a good fundamental understanding of spillover, an important phenomenon in heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the fabrication of an active surf ace-enhanced Raman scattering (SERS) substrate by self-assembled silver nanoparticles on a monolayer of 4-aminophenyl-group-modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4-aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping-mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p-aminothiophenol (p-ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10(-9) m. This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon-based materials for SERS with high sensitivity.