75 resultados para oral cavity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the fabrication of 1.3 mu m waveband p-doped InAs quantum dot (QD) vertical cavity surface emitting lasers (VCSELs) with an extremely simple process. The continuous-wave saturated output power of 1.1 mW with a lasing wavelength of 1280 nm is obtained at room temperature. The high-speed modulation characteristics of p-doped QD VCSELs of two different oxide aperture sizes are investigated and compared. The maximum 3 dB modulation bandwidth of 2.5 GHz can be achieved at a bias current of 7 mA for a p-doped QD VCSEL with an oxide aperture size of 10 mu m in the small signal frequency response measurements. The crucial factors for the 3 dB bandwidth limitation are discussed according to the parameters' extraction from frequency response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristics of a resonant cavity-enhanced InGaAs/GaAs quantum-dot n-i-n photodiode with only a bottom distributed Bragg reflector used as the cavity mirror, are reported. To suppress the dark current, an AlAs layer is inserted into the device structure as the blocking layer. It turns out that the structure still possesses the resonant coupling nature, and makes Rabi splitting discernible in the photoluminescence spectra. The measured responsivity spectrum of the photocurrent shows a peak at lambda = 1030 nm, and increases rapidly as the bias voltage increases. A peak responsivity of 0.75 A/W, or equivalently an external quantum efficiency of 90.3%, is obtained at V-bias = -1.4 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically pumped GaN-based vertical cavity surface-emitting laser (VCSEL) with two Ta2O5/SiO2 dielectric distributed Bragg reflectors (DBRs) was fabricated via a simplifled procedure direct deposition of the top DBR onto the GaN surface exposed after substrate removal and no use of etching and polishing processes. Blue-violet lasing action was observed at a wavelength of 397.3 ran under optical pumping at room temperature with a threshold pumping energy density of about 71.5 mJ/cm(2). The laser action was further confirmed by a narrow emission linewidth of 0.13 nm and a degree of polarization of about 65%. The result suggests that practical blue-violet GaN-bsaed VCSEL can be realized by optimizing the laser lift-off technique for substrate removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diode-pumped passively mode-locked Nd YVO4 laser with a five-mirror folded cavity is presented by using a semiconductor saturable absorber mirror (SESAM). The temperature distribution and thermal lensing in laser medium are numerically analyzed to design a special cavity which can keep the power density on SESAM under its damage threshold. Both the Q-switched and continuous-wave mode-locked operation are experimentally realized. The maximum average output power of 8.94 W with a 9.3 ps pulse width at a repetition rate of 111 MHz is obtained under a pump power of 24 W, correspondingly the optical slope efficiency is 39.2%. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated 1.3-mu m InAs-GaAs quantum-dot (QD) lasers with and without p-type modulation doping and their characteristics have been investigated. We find that introducing p-type doping in active regions can improve the temperature stability of 1.3-mu m InAs-GaAs QD lasers, but it does not, increase the saturation modal gain of the QD lasers. The saturation modal gain obtained from the two types of lasers is identical (17.5 cm(-1)). Moreover, the characteristic temperature increases as cavity length increases for the two types of lasers, and it improves more significantly for the lasers with p-type doping due to their higher gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vertical-cavity surface-emitting laser(VCSEL) has proved to be a low cost light source with attractive properties such as surface emission, circular and low divergence output beam, and simple integration in two-dimensional array. Many new applications such as in spectroscopy, optical storage, short distance fiber optic interconnects, and in longer distance communication, are continuously arising. Many of these applications require stable and single-mode high output power. Several methods that affect the transverse guiding and/or introduce mode selective loss or gain have been developed. In this study, a method for improving the single mode output power by using metal surface plasmons nanostructure is proposed. Theoretical calculation shows that the outpout power is improved about 50% compared to the result of standard VCSELs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 1.55 mum Ge islands resonant-cavity-enhanced (RCE) detector with high-reflectivity bottom mirror was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching in a basic solution from the back side of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mum. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel and simple way to prepare high-reflectivity bottom mirrors for Si-based micro-cavity devices is reported. The bottom mirror was deposited in the hole, which was etched from the backside of the sample by ethylenediamine-pyrocatechol-water solution with the buried Sio, layer in the silicon-on-insulator substrate as the etching-stop layer. The high-reflectivity of the bottom mirror deposited in the hole and the narrow hill width at half maximum of the cavity formed by this method both indicate the successful preparation of the bottom mirror for Si-based micro-cavity devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a novel bonding method using silicate gel as the bonding medium was developed to fabricate an InGaAs narrow-band response resonant cavity enhanced photodetector on a silicon substrate. The bonding was performed at a low temperature of 350 degreesC without any special treatment on bonding surfaces and a Si-based narrow-band response InGaAs photodetector was successfully fabricated, with a quantum efficiency of 34.4% at the resonance wavelength of 1.54 mum, and a full-width at half-maximum of about 27 nm. The photodetector has a linear photoresponse up to 4-mW optical power under 1.5 V or higher reverse bias. The low temperature wafer bonding process demonstrates a great potential in device fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sharp and strong room-temperature photoluminescence (PL) of the Si0.59Ge0.41/Si multiquantum wells grown on the silicon-on-insulator substrate is investigated. The cavity formed by the mirrors at the surface and the buried SiO2 interface enhances the PL emission and has a wavelength-selective effect on the luminescence. The peak position is consistent with the simulation result and independent of the exciting power, which indicates a strong cavity effect on the room-temperature PL. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a scheme to generate maximally entangled states (MESs) of multiple three-level atoms in microwave cavity QED based on the resonant atom-cavity interaction. In the scheme, multiple three-level atoms initially in their ground states are sequently sent through two suitably prepared cavities. After a process of appropriate atom-cavity interaction, a subsequent measurement on the second cavity field projects the atoms onto the MESs. The practical feasibility of this method is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si1-xGex/Si optoelectronic devices are promising for the monolithic integration with silicon-based microelectronics. SiGe/Si MQW RCE-PD (Resonant-Cavity-Enhanced photodiodes) with different structures were investigated in this work. Design and fabrication of top- and bottom-incident RCE-PD, such as growth of SiGe MQW (Multiple Quantum Wells) on Si and SOI (Si on insulator) wafers, bonding between SiGe epitaxial wafer and SOR (Surface Optical Reflector) consisting Of SiO2/Si DBR (Distributed Bragg Reflector) films on Si, and performances of RCE-PD, were presented. The responsivity of 44mA/W at 1.314 mum and the FWHM of 6nm were obtained at bias of 10V. The highest external quantum efficiency measured in the investigation is 4.2%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the optical network, the quick and accurate alignment with wavelength is an important issue during the channel detection. At this point, a filter having flat-top response characteristic is an effective solution. Based on multiple-step-type Fabry-Perot cavity structure, a novel all-Si-based thermooptical tunable flat-top filter with narrow-band has been fabricated, using our patent silicon-on-reflector bonding technology. The device demonstrated a 1-dB flat-top width of 1 nm, 3-dB band of 3 nm, free spectra range of 8 nm, and the tuning range of 4.6 nm was obtained under the applied voltage of 4 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the design, growth, fabrication, and characterization of a GaAs-based resonant-cavity-enhanced (RCE) GaInNAs photodetector operating at 1.55 mu m. The structure of the device was designed using a transfer-matrix method (TMM). By optimizing the molecular-beam epitaxy growth conditions, six GaInNAs quantum wells were used as the absorption layers. Twenty-five (25)- and 9-pair GaAs/AlAs-distributed Bragg reflectors were grown as the bottom and top mirrors. At 1.55 mu m, a quantum efficiency of 33% with a full width at half maximum of 10 nm was obtained. The dark current density was 3x10(-7) A/cm(2) at a bias of 0 V and 4.3x10(-5) A/cm(2) at a reverse bias of 5 V. The primary time response measurement shows that the device has a rise time of less than 800 ps. (c) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Si resonant-cavity-enhanced (RCE) photodiode was fabricated on a silicon membrane. The Si membrane was formed by etching from the back side of the silicon-on-insulator substrate with the buried SiO2 layer as etch-stop layer. A gold layer was deposited serving as an electrode layer and bottom mirror of the RCE photodiode. The photodiode had an external quantum efficiency of 33.8% at the resonant wavelength of 848 nm and a full width at half maximum (FWHM) of 17 nm. The responsivity was 4.6 times that of a conventional Si p-i-n photodiode with the same absorption layer thickness. (c) 2005 American Institute of Physics.