230 resultados para charge compensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel fiber Bragg grating (FBG) pressure sensor based on the double shell cylinder with temperature compensation is presented. in the sensing scheme, a sensing FBG is affixed in the tangential direction on the outer surface of the inner cylinder, and another FBG is affixed in the axial direction to compensate the temperature fluctuation. Based on the theory of elasticity, the theoretical analysis of the strain distribution of the sensing shell is presented. Experiments are carried out to test the performance of the sensor. A pressure sensitivity of 0.0937 nm/MPa has been achieved. The experimental results also demonstrate that the two FBGs have the same temperature sensitivity, which can be utilized to compensate the temperature induced wavelength shift during the pressure measurement. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the charge and spin currents in a three-terminal mesoscopic ring in the presence of a uniform and nonuniform Rashba spin-orbit interaction (SOI). It is shown that a fully spin-polarized charge current and a pure spin current can be generated by tuning the probe voltages and/or the strength of the Rashba SOI. The charge and spin currents oscillate as the strength of the Rashba SOI increases induced by the spin quantum interference. The ratio of probe voltages oscillates synchronously with the pure spin current as the strength of the Rashba SOI increases in a nonuniform Rashba ring, while it remains constant in a uniform Rashba ring. We demonstrate theoretically that a three-terminal uniform Rashba ring can be used as a spin polarizer and/or spin flipper for different spin injections, and a nonuniform Rashba ring could allow us to detect the pure spin current electrically. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3054322]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atomistic pseudopotential quantum mechanical calculations are used to study the transport in million atom nanosized metal-oxide-semiconductor field-effect transistors. In the charge self-consistent calculation, the quantum mechanical eigenstates of closed systems instead of scattering states of open systems are calculated. The question of how to use these eigenstates to simulate a nonequilibrium system, and how to calculate the electric currents, is addressed. Two methods to occupy the electron eigenstates to yield the charge density in a nonequilibrium condition are tested and compared. One is a partition method and another is a quasi-Fermi level method. Two methods are also used to evaluate the current: one uses the ballistic and tunneling current approximation, another uses the drift-diffusion method. (C) 2009 American Institute of Physics. [doi:10.1063/1.3248262]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Decoherence properties of two Josephson charge qubits coupled via the sigma(x)sigma(x) type are investigated. Considering the special structure of this new design, the dissipative effects arising from the circuit impedance providing the fluxes for the qubits' superconducting quantum interference device loops coupled to the sigma(x) qubit variables are considered. The results show that the overall decoherence effects are significantly strong in this qubit design. It is found that the dissipative effects are stronger in the case of coupling to two uncorrelated baths than are found in the case of one common bath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the spin polarized current through a quantum dot connected to ferromagnetic leads in the presence of a finite spin-dependent chemical potential. The effects of the spin polarization of the leads p and the external magnetic field B are studied. It is found that both the magnitude and the symmetry of the current are dependent on the spin polarization of the leads. When the two ferromagnetic leads are in parallel configuration, the spin polarization p has an insignificant effect on the spin current, and an accompanying charge current appears with the increase of p. When the leads are in antiparallel configuration, however, the effect of p is distinct. The charge current is always zero regardless of the variation of p in the absence of B. The peaks appearing in the pure spin current are greatly suppressed and become asymmetric as p is increased. The applied magnetic field B results in an accompanying charge current in both the parallel and antiparallel configurations of the leads. The characteristics of the currents are explained in terms of the density of states of the quantum dot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel efficient charge pump composed of low Vth metal-oxide-semiconductor (MOS) field effect transistors (FET) in the course of realizing radio frequency (RF) energy AC/DC conversion. The novel structure eliminates those defects caused by typical Schottky-diode charge pumps, which are dependent on specific processes and inconsistent in quality between different product batches. Our analyses indicate that an easy-fabricated, stable and efficient RF energy AC/DC charge pump can be conveniently implemented through reasonably configuring the MOS transistor aspect ratio, and other design parameters such as capacitance, multiplying stages to meet various demands on performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unusual dark current voltage (I-V) characteristics were observed in GaN Schottky diodes. I-V characteristics of the GaN Schottky diodes were measured down to the magnitude of 10(-14) A. Although these Schottky diodes were clearly rectifying, their I-V characteristics were non-ideal which can be judged from the non-linearity in the semi-logarithmic plots. Careful analysis of the forward bias I-V characteristics on log-log scale indicates space-charge-limited current (SCLC) conduction dominates the current transport in these GaN Schottky diodes. The concentration of the deep trapping centers was estimated to be higher than 10(15) cm(-3). In the deep level transient spectra (DLTS) measurements for the GaN Schottky diodes, deep defect levels around 0.20 eV below the bottom of the conduction band were identified, which may act as the trapping centers. The concentration of the deep centers obtained from the DLTS data is about 5 x 10(15) cm(-3). SCLC measurements may be used to probe the properties of deep levels in wide bandgap GaN-AlGaN compound semiconductors, as is the case with insulators in the presence of trapping centers. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we first derive a generalized conditional master equation for quantum measurement by a mesoscopic detector, then study the readout characteristics of qubit measurement where a number of remarkable new features are found. The work would, in particular, highlight the qubit spontaneous relaxation effect induced by the measurement itself rather than an external thermal bath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a device, a superconducting-lead/quantum-dot/normal-lead system with an ac voltage applied on the gate of the quantum dot induced by a microwave, based on the one-parameter pump mechanism. It can generate a pure charge- or spin-pumped current. The direction of the charge current can be reversed by pushing the levels across the Fermi energy. A spin current arises when a magnetic field is applied on the quantum dot to split the two degenerate levels, and it can be reversed by reversing the applied magnetic field. The increase of temperature enhances these currents in certain parameter intervals and decreases them in other intervals. We can explain this interesting phenomenon in terms of the shrinkage of the superconducting gap and the concepts of photon-sideband and photon-assisted processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to obtain greater radiation hardness for SIMOX (separation by implanted oxygen) materials, nitrogen was implanted into SIMOX BOX (buried oxide). However, it has been found by the C-V technique employed in this work that there is an obvious increase of the fixed positive charge density in the nitrogen-implanted BOX with a 150 out thickness and 4 x 10(15) cm(-2) nitrogen implantation dose, compared with that unimplanted with nitrogen. On the other hand, for the BOX layers with a 375 nm thickness and implanted with 2 x 10(15) and 3 x 10(15) cm(-2) nitrogen doses respectively, the increase of the fixed positive charge density induced by implanted nitrogen has not been observed. The post-implantation annealing conditions are identical for all the nitrogen-implanted samples. The increase in fixed positive charge density in the nitrogen-implanted 150 nm BOX is ascribed to the accumulation of implanted nitrogen near the BOX/Si interface due to the post-implantation annealing process according to SIMS results. In addition, it has also been found that the fixed positive charge density in initial BOX is very small. This means SIMOX BOX has a much lower oxide charge density than thermal SiO2 which contains a lot of oxide charges in most cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we have calculated and discussed in detail the nonlinear effect induced by three carrier effects: free-carrier absorption, bandgap filling, and bandgap shrinkage. The central wavelength of response of resonant-cavity-enhanced (RCE) photodetectors shifts according to the change of the refractive index, and the response of a given optical wavelength simultaneously changes.With an increasing As composition of ln(1-x)Ga(x)As(y)P(1-y) and the spacer thickness, the nonlinear effect increases, but the -1-dB input saturation optical power and the -1-dB saturation photocurrent decrease. Bistable-state operation occurs when the input optical power is in the proper bistable region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnO nanocrystals were synthesized by hydrolysis in methanol. X-ray diffraction and photoluminescence spectra confirm that good crystallized ZnO nanoparticles were formed. Utilizing those ZnO nanoparticles and poly [2- methoxy-5 - (3',7'-dimethyloctyloxy)- 1,4-phenylenevinylene] (MDMO-PPV), light emitting devices with indium tin oxide (ITO)/poly(3,4-oxyethyleneoxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS)/ ZnO:MDMO-PPV/Al and ITO/PEDOT:PSS/MDMO-PPV/Al structures were fabricated. Electrolummescence (EL) spectra reveal that EL yield of hybrid MDMO-PPV and ZnO nanocrystals devices increased greatly as compared with pristine MDMO-PPV devices. The current-voltage characteristics indicate that addition of ZnO nanocrystals can facilitate electrical injection and charge transport. The decreased energy barrier to electron injection is responsible for the increased efficiency of electron injection. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional quantum trajectory theory developed in quantum optics is largely based on the physical unravelling of a Lindblad-type master equation, which constitutes the theoretical basis of continuous quantum measurement and feedback control. In this work, in the context of continuous quantum measurement and feedback control of a solid-state charge qubit, we present a physical unravelling scheme of a non-Lindblad-type master equation. Self-consistency and numerical efficiency are well demonstrated. In particular, the control effect is manifested in the detector noise spectrum, and the effect of measurement voltage is discussed.