205 resultados para SHELL NANOCRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mn-doped ZnS nanocrystals of about 3 nm diameter were synthesized by a wet chemical method. X-ray diffraction (XRD) measurements showed that the nanocrystals have the structure of cubic zinc blende. The broadening of the XRD lines is indicative of nanomaterials. Room temperature photoluminescence (PL) spectrum of the undoped sample only exhibited a defected-related blue emission band. But for the doped samples, an orange emission from the Mn2+ T-4(1)-(6)A(1) transition was also observed, apart from the blue emission. The peak position (600 nm) of the Mn2+ emission was shifted to longer wavelength compared to that (584 nm) of bulk ZnS:Mn. With the increase of the Mn2+ concentration, the PL of ZnS:Mn was significantly enhanced. The concentration quenching effect was not observed in our experiments. Such PL phenomena were attributed to the absence of Mn2+ pairs in a single ZnS:Mn nanocrystal, considering the nonradiative energy transfer between Mn2+ ions based on the Poisson approximation. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a solution-based chemical method, we have prepared ZnS nanocrystals doped with high concentration of Mn2+. The X-ray diffraction analysis confirmed a zinc blende structure. The average size was about 3 nm. Photoluminescence spectrum showed room temperature emission in the visible spectrum, which consisted of the defect-related emission and the T-4(1)-(6)A(1) emission of Mn2+ ions. Compared with the undoped sample, the luminescence of the ZnS:Mn sample is enhanced by more than an order of magnitude, which indicated that the Mn2+ ions can efficiently boost the luminescence of ZnS nanocrystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Correlations between Si nanocrystal (nc-Si) related photoluminescence (PL), Er3+ emission and nonradiative defects in the Er-doped SiO2 films containing nc-Si (SRSO) are studied. Upon 514.5 nm laser excitation the erbium-doped SRSO samples exhibit PL peaks at around 0.8 and 1.54 mum, which can be assigned to the electron-hole recombination in nc-Si and the intra-4f transition in Er3+, respectively. With increasing Er3+ content in the films, Er3+ emission becomes intense while the PL at 0.8 mum decreases, suggesting a strong coupling of nc-Si and Er 31 ions. Hydrogen plasma treatment for the samples improve the PL intensities of the 0.8 and 1.54 mum bands, indicating H passivation for the nonradiative defects existing in the samples. Further-more, from the effect of hydrogen treatment for the samples, we observe variation of the number of nonradiative defects with annealing temperatures. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon nanocrystals in SiO2 matrix are fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing. The structure and photoluminescence (PL) of the resulting films is investigated as a function of deposition temperature. Drastic improvement of PL efficiency up to 12% is achieved when the deposition temperature is reduced from 250 degreesC to room temperature. Low-temperature deposition is found to result in a high quality final structure of the films in which the silicon nanocrystals are nearly strain-free, and the Si/SiO2 interface sharp. The demonstration of the superior structural and optical properties of the films represents an important step towards the development of silicon-based light emitters. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed ZnS and Eu3+-doped ZnS nanocrystals have been prepared through the co-precipitation reaction of inorganic precursors ZnCl2, EuCl3, and Na2S in a water/methanol binary solution. The mean particle sizes are about 3-5 nm. The structures of the as-prepared ZnS nanoparticles are cubic (zinc blende) as demonstrated by an x-ray powder diffraction. Photoluminescence studies showed a stable room temperature emission in the visible spectrum region for all the samples, with a broadening in the emission band and, in particular, a partially overlapped twin peak in the Eu3+-doped ZnS nanocrystals. The experimental results also indicated that Eu3+-doped ZnS nanocrystals, prepared by controlling synthetic conditions, were stable. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical spectra of CdSe nanocrystals are measured at room temperature under pressure ranging from 0 to 5.2 GPa. The exciton energies shift linearly with pressure below 5.2 GPa. The pressure coefficient is 27 meV GPa(-1) for small CdSe nanocrystals with the radius of 2.4 nm. With the approximation of a rigid-atomic pseudopotential, the pressure coefficients of the energy band are calculated. By using the hole effective-mass Hamiltonian for the semiconductors with wurtzite structure under various pressures, we study the exciton states and optical spectra for CdSe nanocrystals under hydrostatic pressure in detail. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbit coupling on the hole states are investigated. The Coulomb interaction of the exciton states is also taken into account. It is found that the theoretical results are in good agreement with the experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eu2+ doped ZnS nanocrystals exhibit new luminescence properties because of the enlarged energy gap of nanocrystalline ZnS host due to quantum confinement effects. Photoluminescence emission at about 520 nm from Eu2+ doped ZnS nanocrystals at room temperature is investigated by using photoluminescence emission and excitation spectroscopy. Such green emission with long lifetime (ms) is proposed to be a result of excitation, ionization, carriers recapture and recombination via Eu2+ centers in nanocrystalline ZnS host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoluminescence (PL) and Raman spectra of silicon nanocrystals prepared by Si ion implantion into SiO2 layers on Si substrate have been measured at room temperature. Their dependence on annealing temperature was investigated in detail. The PL peaks observed in the as-implanted sample originate from the defects in SiO2 layers caused by ion implantation. They actually disappear after thermal annealing at 800 degrees C. The PL peak from silicon nanocrystals was observed when thermal annealing temperatures are higher than 900 degrees C. The PL peak is redshifted to 1.7 eV and the intensity reaches maximum at the thermal annealing temperature of 1100 degrees C. The characterized Raman scattering peak of silicon nanocrystals was observed by using a right angle scattering configuration. The Raman signal related to the silicon nanocrystals appears only in the samples annealed at temperature above 900 degrees C. It further proves the formation of silicon nanocrystals in these samples. (C) 2000 American Institute of Physics. [S0021-8979(00)00215-2].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tb3+-doped zinc oxide nanocrystals with a hexagonal wurzite structure were successfully prepared by reaction between Zn-O-Tb precursors and LiOH in ethanol. Good incorporation of Tb3+ in ZnO nanocrystals is proved by XRD, FTIR, PL and PLE measurements. The presence of acetate complexes to zinc atoms on particle surfaces is disclosed by FTIR results. Emission from both Tb3+ ions and surface states in ZnO matrix, as well as their correlation were observed. The luminescence mechanism is discussed. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ge embedded in SiOx matrix is fabricated by oxidizing hydrogenated amorphous Sice alloys or hydrogenated amorphous Si/hydrogenated amorphous Ge multilayers. The structures before and after oxidation are systematically investigated. Visible light emission was observed from both samples. The luminescence peak is located at 2.2 eV which is independent of the starting materials. Compared to the luminescence from unlayered samples, the photoluminescence spectrum from multilayered samples has a narrower band width, which can be attributed to the uniform size distribution. The light emission origin is also discussed briefly and a mechanism different from the quantum size effect is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface state recombination effect from the quantum confinement effect in PL signals from the SRO material system was studied. The results show that the larger the size of Si NCs, the more beneficial for the interface state recombination process to surpass the quantum confinement process, in support of Qin's model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.