153 resultados para Pontier, Aug.
Resumo:
We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
We report on the material growth and device performance characterization of a strain-compensated In0.54Ga0.46As/In0.51Al0.49As quantum cascade laser at lambda similar to 8 mu m. For 2 mu s pulse at a 5 kHz repetition rate, laser action is achieved up to room temperature (30 degrees C). The tuning coefficient d lambda/dT is 1.37 nm K-1 between 83 K and 163 K and 0.60 nm K-1 in the range from 183 K to 303 K. The peak output power is reported to be similar to 11.3 mW per facet at 293 K and the corresponding threshold current density is 5.69 kA cm(-2).
Resumo:
Resumo:
Electron spin relaxation induced by phonon-mediated s-d exchange interaction in a II-VI diluted magnetic semiconductor quantum dot is investigated theoretically. The electron-acoustic phonon interaction due to piezoelectric coupling and deformation potential is included. The resulting spin lifetime is typically on the order of microseconds. The effectiveness of the phonon-mediated spin-flip mechanism increases with increasing Mn concentration, electron spin splitting, vertical confining strength, and lateral diameter, while it shows nonmonotonic dependence on the magnetic field and temperature. An interesting finding is that the spin relaxation in a small quantum dot is suppressed for strong magnetic field and low Mn concentration at low temperature.
Resumo:
The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is given. The electronic structure and optical properties are studied in the framework of effective-mass envelope function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting, and so on, different from the Zeeman splitting. With the crystal field splitting energy Delta(c)=25 meV, the dark excitons appear when the radius is smaller than 25.85 A in the absence of external magnetic field. This result is more consistent with the experimental results reported by Efros [Phys. Rev. B 54, 4843 (1996)]. It is found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of external magnetic field and increase with the increase of magnetic field, in agreement with the experimental results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.
Resumo:
We have investigated the evolution of exciton state filling as a function of excitation power density in InAs/GaAs quantum dots (QDs). In addition to the emission bands of exciton recombination corresponding to the atom-like S, P, and D, etc. shells of quantum dots, it was observed that some extra states, P-' (between the S and P shells) and D-' (between the P and D shells), appear in the spectra with increasing number of excitons occupying the QDs. The emergence of these intershell excitonic levels is an experimental demonstration of strong exciton-exciton exchange interaction and coupling as well as state mixing and hybridization of a multiexciton system in quantum dots.
Resumo:
Quasi-aligned ZnO nanotubes have been grown on silicon substrates by metalorganic chemical vapor deposition without using any catalyst. Two kinds of ZnO nanotubular structures were found: Nanotubes with single walls and nanotubes with double walls. The nanotubes were grown along the [001] direction. Room-temperature photoluminescence measurements of the ZnO nanotubes indicate strong ultraviolet emission and weak green emission. A new growth mode for these ZnO nanotubes is proposed, which can be used to prepare other nanotubular structures. (c) 2005 American Institute of Physics.
Resumo:
GaAs/AlGaAs lattice-matched nanorings are formed on GaAs (100) substrates by droplet epitaxy. The crucial step in the formation of nanorings is annealing Ga droplets under As flux for proper time. The observed morphologic evolution of Ga droplets during annealing does not support the hypothesis that As atoms preferentially react with Ga around the periphery of the droplets, but somehow relates to a dewetting process similar to that of unstable films. Photoluminescene (PL) test results confirm the quantum-confinement effect of these GaAs nanorings. Using similar methods, we have fabricated InGaAs/GaAs lattice-mismatched rings. (c) 2005 American Institute of Physics.
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Site-controlled InAs quantum wires were fabricated on cleaved edges of AlGaAs/GaAs superlattices (SLs) by solid source molecular beam epitaxy. The cleaved edge of AlGaAs/GaAs SLs acted as a nanopattern for selective overgrowth after selective etching. By just growing 2.0 ML InAs without high temperature degassing, site-controlled InAs quantum wires were fabricated on the cleaved edge. Furthermore, atomic force microscopy demonstrates the diffusion of In atoms is strong toward the [00 (1) over bar] direction on the (110) surface.
Realization of highly uniform self-assembled InAs quantum wires by the strain compensating technique
Resumo:
Self-assembled InAs quantum wires (QWRs) on InP(001) substrate have been grown by molecular-beam epitaxy, using a strain compensating technique. Atom force microscope, Transmission electron microscopy, and high-resolution x-ray diffraction are used to characterize their structural properties. We proposed that, by carefully adjusting composition of InAlGaAs buffer layer and strain compensating spacer layers, stacked QWRs with high uniformity could be achieved. In addition, the formation mechanism and vertical anti-correlation of QWRs are also discussed. (c) 2005 American Institute of Physics.
Resumo:
When a quantum dot is suffering an AC gate voltage, the sidebands turn up beside the static levels of the dot. We formularized the conductance and current when the effective coupling between levels in the quantum dot induced by the hybrid terms is included using a bi-unitary transform method, and we investigated the interference of the photon sidebands of deferent levels. The interference occurs if the same sidebands of deferent levels overlap, which is possible only when the static levels lie close to and overlap with each other. The overlap of different photon sidebands leads to a simple non-coherent superposition. (C) 2005 Elsevier Ltd. All rights reserved.
The quantum tunneling between two-component Bose-Einstein condensates in a double-well configuration
Resumo:
In terms of exact solution of the time-dependent Schrodinger equation. we examine the quantum tunneling process in Bose condensates of two interacting species trapped in a double well configuration. We use the two series of time-dependent SU(2) gauge transformation to diagonalize the Hamilton operator obtain analytic time-evolution formulas of the population imbalance and the berry phase. The particle population imbalance (a(L)(+)a(L) - a(R)(+)a(R)) of species A between the two wells is studied analytically.
Resumo:
We have successfully grown self-assembled InxGa1-xAs (x = 0.44, 0.47, 0.50) quantum dots (QDs) with high density (> 10(11)/cm(2)) by MBE. The effect of In content on the high-density QD is investigated by atomic force microscopy (AFM) and photoluminescence (PL) spectra. It is found that sample with In-mole-fraction of 0.5 shows small size fluctuation and high PL intensity. The influence of growth temperature on high-density QD is also investigated in our experiment. (c) 2005 Elsevier B.V. All rights reserved.