55 resultados para Lithographic Technical Foundation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GIMMS NDVI database and geo-statistics were used to depict the spatial distribution and temporal stability of NDVI on the Mongolian Plateau. The results demonstrated that: (1) Regions of interest with high NDVI indices were distributed primarily in forested mountainous regions of the east and the north, areas with low NDVI indices were primarily distributed in the Gobi desert regions of the west and the southwest, and areas with moderate NDVI values were mainly distributed in a middle steppe strap from northwest to southeast. (2) The maximum NDVI values maintained for the past 22 years showed little variation. The average NDVI variance coefficient for the 22-year period was 15.2%. (3) NDVI distribution and vegetation cover showed spatial autocorrelations on a global scale. NDVI patterns from the vegetation cover also demonstrated anisotropy; a higher positive spatial correlation was indicated in a NW-SE direction, which suggested that vegetation cover in a NW-SE direction maintained increased integrity, and vegetation assemblage was mainly distributed in the same specific direction. (4) The NDVI spatial distribution was mainly controlled by structural factors, 88.7% of the total spatial variation was influenced by structural and 11.3% by random factors. And the global autocorrelation distance was 1178 km, and the average vegetation patch length (NW-SE) to width (NE-SW) ratio was approximately 2.4:1.0.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文介绍了基金会现场总线实现互操作性的两种主要技术手段:对象字典技术和设备描述技术。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a kind of strategic resource,petroleum play an very important role in current social stability, economic development and state safety. Since 1993 China has turned from a net oil exporter into a net oil importer, the figure of imported oil increased from then on. In 2004 China's total energy consumption exceeded Japan’s, and ranked in the second place, just inferior to America. Today China is the world’s third-largest importing nation, accounting for 6% of world imports and 8% of world consumption. Comparing with other strategic petroleum reserve schemes, underground oil storage possess many advantages, such as security, economy, less pollution, save land, suited for strategic reserve and so on, so it is the most ideal form for strategic petroleum reserve. In the background of China Strategic Petroleum Reserve Program started just now, this paper choose Circum-Bo sea region as a study area, and do some system study on the underground oil storage caverns constructed in inter-large granite rock masses in Circum-Bo sea region. On the foundation of a great amount of information come from both home and abroad, firstly this paper analysed the principle, economy, cavern shape, profile dimension, and gain some cognizances and logos, as follows: ①Hard rock mass such as granite is the major rock, in which underground oil storage are constructed; ②Unlined underground oil storage caverns had been wide spread used as a sort of oil storage form abroad, there already exist a suit of skilled experience and technologies to prevent oil product from leaking; ③Compared with surface tanks, underground oil storage cavern possess predominance in economy clearly. In general, it will be more economical when the storage capacity exceed 50000m3. The quality of rock mass is the most important factor for underground storage cost, however such as hydrogeology, storage capacity, the number of storage galleries, the length, storage product, mechanical equipments, geographic location also influent the cost. In designed depth of the underground storage, the rock mass of Jinzhou mainly belong to class Ⅱ, but parts with dykes, clayization alteration, and dense joints are Ⅲ, Ⅳ; ④Now, there are few underground oil storages span more than 25m in both abroad and home. The examples of some ancient underground works and modern underground excavation with wide span surely give us many precious elicitations to construct more great unlined storage caverns, when the rock mass quality is good, cavern shape and construction method also are proper, it is quite possible to construct underground oil storage cavern with span more than 30m . The main axis orientation of Jinzhou underground oil storage cavern is NW direction, the cavern's elevation locate between -53msl and -76msl. The storage's total volume is about 3×106m3, composed of 8 parallel galleries with 950m length, the pillars between them are 45m, and every two of galleries form one unit, which can deposit 75×104m3 for each unit. The product will be stored are Saudi light and Saudi medium crude oil, the main cavern's section is 411.5m2, with 23m height and 19m width. According to the principle and technique of engineering geomechanics, this study supply a sort of system scientific thinking and method for sitting location of underground oil storage in granite region: ① On the foundation of the earth crust stability sub-zone appraise of Circum-Bo sea region, farther research concerning granite distribution, genesis, geological period and fault structure are conducted in stable areas, generally, this paper select Liaoxi, east shore of Liaotung peninsula and Jiaotung peninsula as target areas for underground oil storage regions, where Mesozoic granite is magnitude; ②After roundly comparison in facts of geologic structure, engineering geology, hydrogeology, topography, transportation and so on of three granite distributed areas, at last, selecting Jingzhou granite zone in Liaoxi out as an ideal construction area; ③ Detailed investigation is conducted in the southeast of Baimashi in Jingzhou development district, the final field. Ultrasonic Borehole Television, as a major way to collect original information of borehole rock mass were used, which is very effective to appraise the quality of deep rock mass; ④ According to the field data of tectonic stress, rock mass quality, the spatial distribution of fracture water, some optimum designs in cross section, axial direction and cavern span have been designed for the underground oil storage cavern layout in Jinzhou. To understand the characteristics of swelling alteration rock in Jinzhou granite mass, collected abundant swelling alteration rock engineering examples in granite, which study them in detail, concluded the swelling alteration rock distribute nearly everywhere in China, intruded medium-basic dykes alteration, along discontinuities and mineral hydrothermal alteration with genesis of granite are three main forms clayization alteration rock in granite rock mass. In Jinzhou field, from macro to micro studied the swelling rock which induced by mid-basic dyke intrusion, with weak swelling. In conclusion, this paper conclude the distribution rule and features of expansion alteration rock in filed, and advise some technical suggestions for excavation at swelling alteration rock part. The main features of this paper: ①In the process of site selection, investigation and design, a suit of technique and method of engineering geomechanics metasynthesis were formed, which is significative to guide the large scale underground oil storage cavern sitting location, investigation and design in granite rock mass; ②The detailed discussion on the engineering geology problems in granite mass, such as weathering crust, faults, dykes and clayization alteration rock, are useful for other projects in aspects of site selection, engineering geology evaluation and stability estimation; ③The summary and integration of the genesis, type, countermeasure relate to swelling alteration rock, also is likely to be used for other underground oil storage caverns constructed in swelling alteration granite. In conclusion, this study is meaningful for guiding the large scale underground oil storage for site selection, investigation and design in granite rock mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PetroChina and other national petroleum incorporations need rigorous procedures and practical methods in risk evaluation and exploration decision at home and abroad to safeguard their international exploration practice in exploration licence bidding, finding appropriate ratio of risk sharing with partners, as well as avoiding high risk projects and other key exploration activities. However, due to historical reasons, we are only at the beginning of a full study and methodology development in exploration risk evaluation and decision. No rigorous procedure and practical methods are available in our exercises of international exploration. Completely adopting foreign procedure, methods and tools by our national incorporations are not practical because of the differences of the current economic and management systems in China. The objective of this study is to establish a risk evaluation and decision system with independent intellectual property right in oil and gas exploration so that a smooth transition from our current practice into international norm can take place. The system developed in this dissertation includes the following four components: 1. A set of quantitative criteria for risk evaluation is derived on the basis of an anatomy of the parameters from thirty calibration regions national wide as well as the characteristics and the geological factors controlling oil and gas occurrence in the major petroleum-bearing basins in China, which provides the technical support for the risk quantification in oil and gas exploration. 2. Through analysis of existing methodology, procedure and methods of exploration risk evaluation considering spatial information are proposed. The method, utilizing Mahalanobis Distance (MD) and fuzzy logic for data and information integration, provides probabilistic models on the basis of MD and fuzzy logic classification criteria, thus quantifying the exploration risk using Bayesian theory. A projection of the geological risk into spatial domain provides a probability map of oil and gas occurrence in the area under study. The application of this method to the Nanpu Sag shows that this method not only correctly predicted the oil and gas occurrence in the areas where Beibu and Laoyemiao oil fields are found in the northwest of the onshore area, but also predicted Laopu south, Nanpu south and Hatuo potential areas in the offshore part where exploration maturity was very low. The prediction of the potential areas are subsequently confirmed by 17 exploration wells in the offshore area with 81% success, indicating this method is very effective for exploration risk visualization and reduction. 3. On the basis of “Methods and parameters of economic evaluation for petroleum exploration and development projects in China”, a ”pyramid” method for sensitivity analysis was developed, which meets not only the need for exploration target evaluation and exploration decision at home, but also allows a transition from our current practice to international norm in exploration decision. This provides the foundation for the development of a software product “Exploration economic evaluation and decision system of PetroChina” (EDSys). 4. To solve problem in methodology of exploration decision, effort was made on the method of project portfolio management. A drilling decision method was developed employing the concept of geologically risked net present value. This method overcame the dilemma of handling simultaneously both geological risk and portfolio uncertainty, thus casting light into the application of modern portfolio theory to the evaluation of high risk petroleum exploration projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil-rock mixture (S-RM) refers to one extremely uneven loose rock and soil materials system with certain stone content. Its formation has started since Quaternary and it is composed of block stone, fine grained soil and pore with certain project scale and high strength. S-RM has extensive distribution in nature, especially in southwest China where the geotectonic background is complicated, the fracture activity is developed and the geomorphological characteristics of high mountain and steep gorge area are protuberant. This kind of complicated geologic body has developed wider in these areas. S-RM has obvious difference with the general soil or rock (rock mass) in physical and mechanical properties because its two components-“soil” and “rock-block” has extreme differences in physical and mechanical properties. The proposition of S-RM and its deep research are needed in the modern engineering construction. It is also the necessity in the modern development of rock and soil mechanics. The dissertation starts from the meso-structural characteristics of soil-rock and takes a systematic research on its meso-structural mechanics, deformation and failure mechanism and the stability of S-RM slope. In summary, it achieves the following innovative results and conclusions. There are various views on the conception of S-RM and its classification system. Based on the large number of field tests, the dissertation makes the conception and classification of S-RM more systematic. It systematically proposed the conception of meso-structural mechanics of S-RM. Thus the dissertation has laid a foundation for its deep study. With the fast development of the computer technology and digital image processing theory, digital image processing technology has been successfully applied in many fields and provided reliable technology support for the quantitative description of the structural characteristics of S-RM. Based on the digital image processing technology, the dissertation systematically proposes and developed the quantitative analysis method and quantitative index for the meso-structure of S-RM. The results indicate that the meso-structure such as its internal soil-rock granularity composition, the soil-rock shape and the orientability has obvious self-organization in the macro statistical level. The dissertation makes a systematic research on the physical mechanical properties, deformation and failure mechanism of S-RM based on large field test. It proposes the field test for the underwater S-RM and deduces the 3D data analysis method of in-situ horizontal push-shear test. The result indicates that S-RM has significant phenomenon of shear dilatancy in the shearing process, and its dilatancy will be more obvious with the increased proportion of rock or the decreased confining pressure. The proportion of rock has great effect on the strength of S-RM and rock-block, especially the spatial position of particles with comparatively big size has great effect on the shape and spatial position of the sample shear zone. The dissertation makes some improvements in the single ring infiltration test equipment and its application on the permeability of S-RM. The results indicate that the increasing of rock-block would make it more difficult for the soil to fill in the vacuity between the rock-block and the proportion would increase which would result in the increased permeability coefficient. The dissertation builds the real meso-structural model of S-RM based on the digital image processing technology. By using geometric reconstruction technology, it transfers the structural mode represented by Binary image into CAD format, which makes it possible to introduce the present finite element analysis software to take research on numerical experimental investigation. It systematically realizes leaping research from the image,geometric mode, to meso-structural mechanics numerical experiment. By using this method, the dissertation takes large scale numerical direct-shear test on the section of S-RM. From the mesoscopic perspective, it reveals three extended modes about the shear failure plane of S-RM. Based on the real meso-structural model and by using the numerical simulation test, the character and mechanics of seepage failure of S-RM are studied. At the same time, it builds the real structural mode of the slope based on the analysis about the slope crosssection of S-RM. By using the strength reduction method, it takes the research on the stability of S-RM and gets great achievements. The three dimensional geometric reconstruction technology of rock block is proposed, which provides technical support for the reconstruction of the 3D meso-structural model of S-RM. For the first time, the dissertation builds the stochastic structure model of two-dimensional and three-dimensional polygons or polyhedron based on the stochastic simulation technique of monte carlo method. It breaks the traditional research which restricted to the random generation method of regular polygon and develops the relevant software system (R-SRM2D/3D) which has great effect on meso-structural mechanics of S-RM. Based on the R-SRM software system which randomly generates the meso-structural mode of S-RM according to the different meso-structural characteristics, the dissertation takes a series of research on numerical test of dual axis and real three-axis, systematically analyses the meso destroy system, the effects of meso-structural characteristics such as on the stone content, size composition and block directionality on the macro mechanical behavior and macro-permeability. Then it proposes the expression of the upper and lower limit for the macro-permeability coefficient of the inhomogeneous geomaterials, such as S-RM. By using the strength reduction FEM, the dissertation takes the research on the stability of the slope structural mode of the randomly formed S-RM. The results indicate that generally, the stability coefficient of S-RM slope increases with the increasing of stone content; on the condition of the same stone content, the stability coefficient of slope will be different with different size composition and the space position of large block at the internal slop has great effect on the stability. It suggests that meso-structural characteristics, especially the space position of large block should be considered when analyzing the stability of this kind of slope and strengthening design. Taking Xiazanri S-RM slope as an example, the dissertation proposes the fine modeling of complicated geologic body based on reverse engineering and the generation method of FLAC3D mode. It resolves the bottleneck problem about building the fine structural mode of three-dimensional geological body. By using FLAC3D, the dissertation takes research on the seepage field and the displacement field of Xiazanri S-RM slope in the process of reservoir water level rising and decreasing. By using strength reduction method, it analyses the three-dimension stability in the process of reservoir water level rising and decreasing. The results indicate that the slope stability firstly show downward trend in the process of reservoir water level rising and then rebound to increase; the sudden drawdown of reservoir water level has great effect on the slope stability and this effect will increase with the sudden drawdown amplitude rising. Based on the result of the rock block size analysis of S-RM, and using R-SRM2D the stochastic structure model of Xiazanri S-RM slope is built. By using strength reduction method, the stability of the stochastic structure model is analysis, the results shows that the stability factor increases significantly after considering the block.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guided by geological theories, the author analyzed factual informations and applied advanced technologies including logging reinterpretation, predicting of fractal-based fracture network system and stochastic modeling to the low permeable sandstone reservoirs in Shengli oilfield. A new technology suitable for precious geological research and 3D heterogeneity modeling was formed through studies of strata precious correlation, relation between tectonic evolution and fractural distribution, the control and modification of reservoirs diagenesis, logging interpretation mathematical model, reservoir heterogeneity, and so on. The main research achievements are as follows: (1) Proposed four categories of low permeable reservoirs, which were preferable, general, unusual and super low permeable reservoir, respectively; (2) Discussed ten geological features of the low permeable reservoirs in Shengli area; (3) Classified turbidite fan of Es_3 member of the Area 3 in Bonan oilfield into nine types of lithological facies, and established the facies sequences and patterns; (4) Recognized that the main diagenesis were compaction, cementation and dissolution, among which the percent compaction was up to 50%~90%; (5) Divided the pore space in ES_3 member reservoir into secondary pores with dissolved carbonate cement and residual intergranular pores strongly compacted and cemented; (6) Established logging interpretation mathematical model guided by facies- control modeling theory; (7) Predicted the fracture distribution in barriers using fractal method; (8) Constructed reservoir structural model by deterministic method and the 3D model of reservoir parameters by stochastic method; (9) Applied permeability magnitudes and directions to describe the fractures' effect on fluid flow, and presented four different fractural configurations and their influence on permeability; (10) Developed 3D modeling technology for the low permeable sandstone reservoirs. The research provided reliable geological foundation for the establishment and modification of development plans in low permeable sandstone reservoirs, improved the development effect and produced more reserves, which provided technical support for the stable and sustained development of Shengli Oilfield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As the foundation of other human resource practices, job analysis plays an essential role in HR management. Exploring sources of variance in job analysis ratings given by incumbents from the same job is of much significance to HRM practices. It can also shed lights on employee motivation in organizations. But previous studies in job analysis field have usually been conducted at individual level and take variance in job analysis ratings given by incumbents of the same job as error or bias. This dissertation takes the position that the variance may be meaningful based on role theory and other relevant theories. It first reviewed pervious studies on factors which may influence job analysis ratings provided by incumbents of the same job, and then investigated individual, interpersonal and organizational level variables which may exert impacts on these job analysis ratings, using multilevel data from 8 jobs of 1124 incumbents. The major findings are as follows: 1) Level of job performance and job attitudes affect incumbents’ job analysis ratings by incumbents of the same job at individual level. Specifically, incumbents with high level of job performance rated their job require higher levels of technical skills (power plant designers), and regarded information processing activities as more important to their job (book editors). Regarding the effects of job attitudes, incumbents of the four jobs with high level of job satisfaction gave higher importance and level ratings on organizational and cognitive skills, as well as higher level ratings on technical skills. Further, incumbents with higher affective commitment provided higher importance and level ratings of cognitive skills. Lastly, more involved job incumbents perceived organizational skills and cognitive skills as more important, and required at higher levels, for their job. 2) Leader-Member Exchange and goal structure also have effects on job analysis ratings by incumbents of the same job at interpersonal level. In good quality LMX relationship, news reporters rated decision-making activities and interpersonal activities as more important to their job. On the other side, when book editors structured their goals as cooperative with others’, they provided higher importance ratings on reasoning and interpersonal skills, and related personality requirements, as well as higher level ratings on reasoning abilities. 3) Worker requirements for the identical job are distinct from one organization to another. Specifically, there were between-organization differences in achievement orientation and conscientiousness related personality requirements. In addition, two dimensions of organizational culture, achievement-oriented culture and integrity-oriented culture in particular, were significantly associated with importance ratings of achievement orientation and conscientiousness related personality requirements respectively. Furthermore, achievement-oriented culture both directly and indirect (through job involvement) influenced achievement orientation related personality requirements. The results indicate that variation in job analysis ratings provided by incumbents of the same job may be meaningful. Future job analysis studies and practices should consider the impacts of these individual, interpersonal and organizational level factors on job analysis information. The results also have important implications for employee motivation concerning how organizational demands can be transformed into specific job and worker requirements.