184 resultados para LAYER THICKNESS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

简要论述了标量散射理论的研究进展做,着重介绍了Beckman的一维标量散射理论和几种典型的多层膜散射模型-非相关表面粗糙度模型、附加表面粗糙度模型和非相关体内不均匀模型,比较了这些模型在中心波长为632.8nm的11层高反膜的散射特性.结果表明,非相关体内的不均匀性引起反射能带边缘散射,反射能带内的散射主要由附加表面粗糙度引起.理想粗糙度对膜系反射带内的散射影响很小,对反射带边缘几乎无影响.预测了标量散射理论的应用领域及前景.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

利用傅里叶模式理论分析了TE波自准直角入射的使用条件下,多层介质膜光栅的光栅区和多层膜区电场分布的特点.分别讨论了HfO2和SiO2为顶层光栅材料时,光栅结构参数对光栅脊峰值电场的影响,结果表明,对于不同膜厚的顶层材料,存在一个最佳膜厚度,使光栅脊峰值电场最小,并且当膜厚增大时,设计大高宽比的光栅可以降低该电场峰值.最后,在大角度条件下使用多层膜光栅也可以降低光栅脊处的峰值电场.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

分析了倾斜入射条件下导致光学薄膜产生偏振的原因, 针对不同偏振态的等效导纳与等效相位进行了分析, 并计算了对称膜层在45°入射条件下不同偏振态的等效折射率与等效相位厚度, 采用等效层方法设计了光学性能良好的600~900 nm波段消偏振宽带减反膜。最后利用电子束蒸发技术制备了薄膜样品, 样品的光谱性能完全能够满足使用要求。其中在600~900 nm波段范围内, 平均反射率均小于1.38%, 反射率的偏振度均低于0.89%。另外, 通过对其理论及实验光学性能、角度敏感性、膜层厚度误差敏感性等方面的分析结果可

Relevância:

60.00% 60.00%

Publicador:

Resumo:

在4H-SiC基底上设计并制备了Al2O3/SiO2紫外双层减反射膜,通过扫描电镜(SEM)和实测反射率谱来验证理论设计的正确性。利用编程计算得到Al2O3和SiO2的最优物理膜厚分别为42.0nm和96.1nm以及参考波长λ=280nm处最小反射率为0.09%。由误差分析可知,实际镀膜时保持双层膜厚度之和与理论值一致有利于降低膜系反射率。实验中应当准确控制SiO2折射率并使Al2O3折射率接近1.715。用电子束蒸发法在4H-SiC基底上淀积Al2O3/SiO2双层膜,厚度分别为42nm和96nm。SEM截面图表明淀积的薄膜和基底间具有较强的附着力。实测反射率极小值为0.33%,对应λ=276nm,与理论结果吻合较好。与传统SiO2单层膜相比,Al2O3/SiO2双层膜具有反射率小,波长选择性好等优点,从而论证了其在4H-SiC基紫外光电器件减反射膜上具有较好的应用前景。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

按照高斯型渐变反射率镜(GRM)的参数要求,采用了中间层厚度渐变的方案对膜系和掩模板形状进行设计.根据薄膜的实际需求和具体的沉积设备,设计了掩模和掩模切换装置.在一次高真空环境下镀制了渐变反射率镜的所有膜系.采用直接测量的方法,测量了高斯型渐变反射率镜反射率的径向分布.测试结果表明,用这种技术制备的样品,与设计要求基本一致.分析得出,掩模板形状与精度对镀制结果有影响.随着设计尺寸减小,掩模板对膜料分子的散射作用增强,使样品中心反射率小于设计要求,边缘出现旁瓣.提出了减小基片与掩模板之间的距离和提高膜厚监控的精度的改善方案.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

According to the parameter requirements of a graded reflectivity mirror with a Gaussian profile, the layer structure and the mask pattern are designed using a graded-thickness middle layer. The mask and the automatic mask-switchover equipment are designed considering the actual requirement of the thin films and the specific deposit facility. The uniformity of the layer thickness is analyzed. The measurement results indicate that samples prepared with this technique are basically in accordance with the design parameter. The scattering effect between the material molecules and the mask, thickness errors, and the alignment error between the mask and the substrate are the main factors that influence the deposit result. (c) 2008 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3027595]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence (PL) and lasing properties of InAs/GaAs quantum dots (QDs) with direrent growth procedures prepared by metalorganic chemical vapour deposition are studied. PL measurements show that the low growth rate QD sample has a larger PL intensity and a narrower PL line width than the high growth rate sample. During rapid thermal annealing, however, the lowgrowth rate sample shows a greater blue shift of PL peak wave length. This is caused by the larger InAs layer thickness which results from the larger 2-3 dimensional transition critical layer thickness for the QDs in the low-growth-rate sample. A growth technique including growth interruption and in-situ annealing, named indium flush method, is used during the growth of GaAs cap layer, which can flatten the GaAs surface effectively. Though the method results in a blue shift of PL peak wavelength and a broadening of PL line width, it is essential for the fabrication of room temperature working QD lasers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The characteristics of whispering-gallery modes (WGMs) in 3-D cylindrical, square, and triangular microcavities with vertical optical confinement of semiconductors are numerically investigated by the finite-difference time-domain (FDTD) technique. For a microcylinder with a vertical refractive index 3.17/3.4/3.17 and a center layer thickness 0.2 mu m, Q-factors of transverse electric (TE) WGMs around wavelength 1550 nm are smaller than 10(3), as the radius R < 4 mu m and reach the orders of 10(4) and 10(6) as R = 5 and 6 mu m, respectively. However, the Q-factor of transverse magnetic (TM) WGMs at wavelength 1.659 mu m reaches 7.5 x 10(5) as R = 1 mu m. The mode coupling between the WGMs and vertical radiation modes in the cladding layer results in vertical radiation loss for the WGMs. In the microcylinder, the mode wavelength of TM WGM is larger than the cutoff wavelength of the vertical radiation mode with the same mode numbers, so TM WGMs cannot couple with the vertical radiation mode and have high Q-factor. In contrast, TE WGMs can couple with the corresponding vertical radiation mode in the 3-D microcylinder as R < 5 mu m. However, the mode wavelength of the TE WGM approaches (is larger than) the cutoff wavelength of the corresponding radiation modes at R = 5 mu m (6 mu m), so TE WGMs have high Q-factors in such microcylinders too. The results show that a critical lateral size is required for obtaining high, Q-factor TE WGMs in the 3-D microcylinder. For 3-D square and triangular microcavities, we also find that the Q-factor of TM WGM is larger than that of TE WGM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a study of the correlation between the electrical properties and the structural defects in nominally undoped InN films. It is found that the density of edge-type threading dislocations (TDs) considerably affects the electron concentration and mobility in InN films. The Hall-effect measured electron concentration increases, while the Hall mobility decreases with the increase in the edge-type TD density. With the combination of secondary ion mass spectrometry and positron annihilation analysis, we suggest that donor-type point defects at the edge-type TD lines may serve as dominant donors in InN films and affect the carrier mobility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mode characteristics of three-dimensional (3-D) microsquare resonators are investigated by finite-difference time-domain (FDTD) simulation for the transverse electric (TE)-like and the transverse magnetic (TM)-like modes. For a pillar microsquare with a side length of 2 pin in air, we have Q-factors about 5 X. 103 for TM-like modes at the wavelength of 1550 run, which are one order larger than those of TE-like modes, as vertical refractive index distribution is 3.17/3.4/3.17 and the cororresponding center layer thickness is 0.2 mu m. The mode field patterns show that TM-like modes have much weaker vertical radiation coupling loss than TE-like modes. TM-like modes can have high Q-factors in a microsquare with weak vertical field confinement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for accurate determination of the curvature radius of semiconductor thin films is proposed. The curvature-induced broadening of the x-ray rocking curve (XRC) of a heteroepitaxially grown layer can be determined if the dependence of the full width at half maximum (FWHM) of XRC is measured as a function of the width of incident x-ray beam. It is found that the curvature radii of two GaN films grown on a sapphire wafer are different when they are grown under similar MOCVD conditions but have different values of layer thickness. At the same time, the dislocation-induced broadening of XRC and thus the dislocation density of the epitaxial film can be well calculated after the curvature correction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of annealing on the optical properties of InAs/GaAs quantum dots (QDs) grown under different conditions by metalorganic chemical vapor deposition (MOCVD) are studied. A lower QD growth rate leads to an earlier and faster decrease of QD photoluminescence (PL) intensity with increasing annealing temperature. which is proposed to be related to the increased QD two-dimensional (2D)-three-dimensional (3D) transition critical layer thickness at low QD growth rate. High-quality GaAs cap layers grown at high temperature and a low deposition rate are shown to decrease the blueshift of the QDs' emission wavelength significantly during in-situ I h annealing experiments, which is important for the fabrication of long-wavelength InAs/GaAs QD lasers by MOCVD technique. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-indium-content InxGa1-xAs/GaAs single/multi-quantum well (SQW/MQW) structures have been systematically investigated. By optimizing the molecular-beam epitaxy growth conditions, the critical thickness of the strained In0.475Ga0.525As/GaAs QWs is raised to 7 nm, which is much higher than the value given by the Matthews and Blakeslee model. The good crystalline quality of the strained InGaAs/GaAs MQWs is proved by x-ray rocking curves. Photoluminescence measurements show that an emission wavelength of 1.25 mum at room temperatures with narrower full width at half maximum less than 30 meV can be obtained. The strain relaxation mechanism is discussed using the Matthews-Blakeslee model. (C) 2004 American Institute of Physics.