71 resultados para ENHANCED STRUCTURE ELUCIDATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon-based resonant-cavity-enhanced photodetectors (RCE-PD) with Si, Ge islands and InGaAs as absorption materials were introduced, respectively. The Ge islands and Si RCE-PD had a membrane structure and the Si-based InGaAs RCE-PDs were fabricated by bonding technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the technique of elastic recoil detection (ERD), we have measured the hydrogen profiles in a-Si:H/a-Si structure samples annealed at various temperatures with and without electrical bias, and investigated the influence of electrical bias on hydrogen diffusion. The results show that hydrogen diffusion in a-Si is significantly enhanced by the action of electrical bias. The existence of the excess carriers, which are introduced by electrical injection, is considered to be responsible for the enhancement of hydrogen diffusion, and the microprocess of hydrogen transport has been exploited.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have measured low-temperature photoluminescence (PL) and optical absorption spectra of an In0.2Ga0.8As/GaAs multiple quantum well (MQW) structure at pressures up to 8 GPa. Below 4.9 GPa, PL shows only the emission of the n = 1 heavy-hole (HH) exciton. Three new X-related PL bands appear at higher pressures. They are assigned to spatially indirect (type-II) and direct (type-I) transitions from X(Z) states in GaAs and X(XY) valleys of InGaAs, respectively, to the HH subband of the wells. From the PL data we obtain a valence band offset of 80 meV for the strained In0.2Ga0.8As/GaAs MQW system. Absorption spectra show three features corresponding to direct exciton transitions in the quantum wells. In the pressure range of 4.5 to 5.5 GPa an additional pronounced feature is apparent in absorption, which is attributed to the pseudo-direct transition between a HH subband and the folded X(Z) states of the wells. This gives the first clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance at the heterointerfaces in MQWs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy (MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source. A transfer matrix method was used to optimize the device structure. The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers. Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves. The maximal quantum efficiency of the device is about 12% at 1.293μm. Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz. Dark current is 2 * 10~(-11) A at zero bias voltage. Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorphous Si nanowires (SiNWS) have been successfully synthesized on Si wafer by plasma enhanced chemical vapor deposition (PECVD) at 440degreesC,using silane as the Si source and Au as the catalyst. To grow the polymorphous SiNWS preannealing the Si substrate with Au film at 1100 degreesC is needed. The diameters of Si nanowires range from 15 to 100 urn. The structure morphology and chemical composition of the SiNWS have been characterized by high resolution x-ray diffraction, scanning electron microscopy, transmission electron microscopy, as well as energy dispersive x-ray spectroscopy. A few interesting nanowires with Au nanoclusters uniformly distributed in the body of the wire were also produced by this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified subcell approach was adopted to evaluate the current density distributions of proton exchange membrane fuel cells (PEMFCs) with different electrodes. Conventional hydrophobic electrodes showed better performance under flooding conditions compared to hydrophilic electrodes. The thin-film hydrophilic electrode performed better in the absence of liquid water, but it was more readily flooded. A composite catalyst layer was designed with 2/3 of the area from the inlet prepared hydrophilic and the remaining 1/3 area hydrophobic. The composite catalyst layer with commercial scale dimension showed notable enhanced performance in the concentration polarization region. (C) 2004 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lewis base modification strategy on rare earth ternary catalyst was disclosed to enhance nucleophilic ability of active center during copolymerization of carbon dioxide and propylene oxide (PO), poly(propylene carbonate) (PPC) with H-T linkages over 83%, and number-average molecular weight (M-n) up to 100 kg/mol was synthesized at room temperature using Y(CCl3OO)(3)-ZnEt2-glycerine catalyst and 1,10-phenanthroline (PHEN) cocatalyst. Coordination of PHEN with active Zinc center enhanced the nucleophilic ability of the metal carbonate, which became more regio-specific in attacking carbon in PO, leading to PPC with improved H-T linkages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, BPO4-xSiO(2) (X: SiO2/BPO4 molar ratio, 0-70%) and BPO4-xAl(2)O(3) (X: Al2O3/BPO4 molar ratio, 0-20%) powder samples were prepared by the Pechini-type sol-gel (PSG) process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, kinetic decay, and X-ray photoelectron spectra (XPS), respectively. It was found that the Pechini-type sol-gel-derived BPO4-xSiO(2) annealed at 1000 degrees C and BPO4-xAl(2)O(3) annealed at 960 degrees C exhibited bright bluish-white emissions centered at 428 and 413 nm, respectively. The luminescence decay curve analysis indicates that each sample has two kinds of lifetimes (more than 0.4 ms and less than 10 ns) and two types of kinetic decay behaviors, which can be fitted into a double-exponential function and a single-exponential function, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this present work, a polymer electrolyte based on polymer/clay nanocomposite has been developed. Montmorillonite (MMT) clay was used as the filler. due to its special size in length and thickness, and its sandwich type structure. The obtained gel polymer electrolytes have high ionic conductivity up to 2.5 mS cm(-1) with high cationic transference number (about 0.64) at room temperature. The influences of the filler on the membrane morphology. the solvent uptake, the ionic conductivity, and the cation transport number were investigated, and thus the significant contribution from the exfoliated organophilic MMT was identified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple, convenient, sensitive and accurate analytical methods are needed for the structural characterization and identification of alkaloid components in Rhizoma Coptidis in traditional Chinese herbal medicine, which has important bioactivity. In this work, the identification of alkaloid compounds in Rhizoma Coptidis was investigated by obtaining molecular mass information using electrospray ionization mass spectrometry (ESI-MS). Multi-stage tandem mass spectrometric (ESI-MSn) data for the alkaloid compounds were used for detailed structural characterization, then structure information was obtained by comparison of the fragmentation mechanisms of both alkaloids in Rhizoma Coptidis and standard samples of berberine, palmatine, coptisine and jatrorrhizine by MS. Based on the results obtained, the structure of a novel compound was elucidated. The results of the experiments demonstrate that ESI-MSn is a sensitive, selective and effective tool for the rapid determination of alkaloids in Rhizoma Coptidis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-crystalline C-60 center dot 1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C-60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of approximate to 10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C-60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C-60 and m-xylene. It was found that the interaction between C-60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C-60 molecule and induces strong PL from the solvate nanorods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G* level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles.