117 resultados para Chloride transport
Resumo:
We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]
Resumo:
We study the theory of temperature-dependent electron transport, spin polarization, and spin accumulation in a Rashba spin-orbit interaction (RSOI) quantum wire connected nonadiabatically to two normal conductor electrode leads. The influence of both the wire-lead connection and the RSOI on the electron transport is treated analytically by means of a scattering matrix technique and by using an effective free-electron approximation. Through analytical analysis and numerical examples, we demonstrate a simple way to design a sensitive spin-transfer switch that operates without applying any external magnetic fields or attaching ferromagnetic contacts. We also demonstrate that the antisymmetry of the spin accumulation can be destroyed slightly by the coupling between the leads and the wire. Moreover, temperature can weaken the polarization and smear out the oscillations in the spin accumulation.
Resumo:
Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.
Resumo:
Magnetotransport properties of two-dimensional electron gas have been investigated for three In0.53Ga0.47As/In0.52Al0.48As quantum well samples having two occupied subbands with different well widths. When the intersubband scattering is considered, we have obtained the subband density, transport scattering time, quantum scattering time and intersubband scattering time, respectively, by analyzing the result of fast Fourier transform of the first derivative of Shubnikov-de Haas oscillations. It is found that the main scattering mechanism is due to small-angle scattering, such as ionized impurity scattering, for the first subband electrons.
Resumo:
We theoretically investigate the spin transport in two-terminal mesoscopic rings in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that the interplay between the RSOI and DSOI breaks the original cylindric symmetry of the mesoscopic rings and consequently leads to the anisotropic spin transport, i.e., the conductance is sensitive to the positions of the incoming and outgoing leads. The anisotropic spin transport can survive even in the presence of disorder caused by impurity elastic scattering in a realistic system.
Resumo:
Hall effect, Raman scattering, photoluminescence spectroscopy (PL), optical absorption (OA), mass spectroscopy, and X-ray diffraction have been used to study bulk ZnO single crystal grown by a closed chemical vapor transport method. The results indicate that shallow donor impurities (Ga and Al) are the dominant native defects responsible for n-type conduction of the ZnO single crystal. PL and OA results suggest that the as-grown and annealed ZnO samples with poor lattice perfection exhibit strong deep level green photoluminescence and weak ultraviolet luminescence. The deep level defect in as-grown ZnO is identified to be oxygen vacancy. After high-temperature annealing, the deep level photoluminescence is suppressed in ZnO crystal with good lattice perfection. In contrast, the photoluminescence is nearly unchanged or even enhanced in ZnO crystal with grain boundary or mosaic structure. This result indicates that a trapping effect of the defect exists at the grain boundary in ZnO single crystal. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
(110) ZnO/(001) Nb-1 wt %-doped SrTiO3 n-n type heteroepitaxial junctions were fabricated using the pulse laser deposition method. A diodelike current behavior was observed. Different from conventional p-n junctions or Schottky diodes, the diffusion voltage was found to increase with temperature. At all temperatures, the forward current was perfectly fitted on the thermionic emission model. The band bending at the interface can qualitatively explain our results, and the extracted high ideality factor at low temperatures, as well as large saturation currents, is ascribed to the deep-level-assisted tunneling current through the junction. (C) 2008 American Institute of Physics.
Resumo:
We investigate theoretically the charge and spin transport in quantum wires grown along different crystallographic planes in the presence of the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We find that changing the crystallographic planes leads to a variation of the anisotropy of the conductance due to a different interplay between the RSOI and DSOI, since the DSOI is induced by bulk inversion asymmetry, which is determined by crystallographic plane. This interplay depends sensitively on the crystallographic planes, and consequently leads to the anisotropic charge and spin transport in quantum wires embedded in different crystallographic planes.
Resumo:
By replacing the flat (Ga1-xAlx)As barrier layer with a trapezoidal AlxGa1-xAs barrier layer, a conventional heterostructure can be operated in enhancement mode. The sheet density of two-dimensional electron gas (2DEG) in the structure can be tuned linearly from N-2D = 0.3 x 10(11) cm(-2) to N-2D = 4.3 x 10(11) cm(-2) by changing the bias on the top gate. The present scheme for gated heterostructures is easy to fabricate and does not require the use of self-alignment photolithography or the deposition of insulating layers. In addition, this scheme facilitates the initial electrical contact to 2DEG. Although, the highest electron mobility obtained for the moment is limited by the background doping level of heterostructures, the mobility should be improved substantially in the future. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We theoretically investigate the charge transport in the quantum waveguides in the presence of the Rashba spin-orbit interaction and the Dresselhaus spin-orbit interaction. We find that the interplay between the Rashba spin-orbit interaction and Dresselhaus spin-orbit interaction can induce a symmetry breaking and consequently leads to the anisotropic charge transport in the quantum waveguides, the conductance through the quantum waveguides depends sensitively on the crystallographic orientations of the quantum waveguides. The anisotropy of the charge transport can even survive in the presence of disorder effect in realistic systems.
Resumo:
We have theoretically investigated ballistic electron transport through a combination of magnetic-electric barrier based on a vertical ferromagnet/two-dimensional electron gas/ferromagnet sandwich structure, which can be experimentally realized by depositing asymmetric metallic magnetic stripes both on top and bottom of modulation-doped semiconductor heterostructures. Our numerical results have confirmed the existence of finite spin polarization even though only antisymmetric stray field B-z is considered. By switching the relative magnetization of ferromagnetic layers, the device in discussion shows evident magnetoconductance. In particular, both spin polarization and magnetoconductance can be efficiently enhanced by proper electrostatic barrier up to the optimal value relying on the specific magnetic-electric modulation. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3041477]
Resumo:
InGaN based light emitting devices (LEDs) with asymmetric coupled quantum wells (AS-QWs) and conventional symmetric coupled quantum wells (CS-QWs) active structures were grown by metal-organic chemical vapor deposition technique. The LEDs with AS-QWs active region show improved light emission intensity and reduced forward voltage compared with LEDs with CS-QWs active region. Based on the electroluminescence measurements and the devices structure analysis, it can be concluded that these improvements are mainly attributed to the efficient hole tunneling through barriers and consequently the uniform distribution of carriers in the AS-QWs. (C) 2009 American Institute of Physics. [doi: 10.1063/1.3254232]
Resumo:
Beating patterns in longitudinal resistance caused by the symmetric and antisymmetric states were observed in a heavily doped InGaAs/InAlAs quantum well by using variable temperature Hall measurement. The energy gap of symmetric and antisymmetric states is estimated to be 4meV from the analysis of beating node positions. In addition, the temperature dependences of the subband electron mobility and concentration were also studied from the mobility spectrum and multicarrier fitting procedure.
Resumo:
In this paper we study a single electron tunneling through a vertically stacked self-assembled quantum disks structure using a transfer matrix technique in the framework of effective mass approximation. In the disks, the electron is confined both laterally and vertically; we separate the motion in the vertical and lateral directions within the adiabatic approximation and treat the energy levels of the latter as an effective confining potential. The influence of a constant applied electric field is taken into account using an exact Airy-function formalism and the current density is calculated at zero temperature. By increasing the widths of the barriers, we find the peaks of the current density shift toward lower voltage region; meanwhile, they can become even sharper. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the transient electroluminescence (EL) onset of the double-layer light-emitting devices made from poly(N-vinylcarbozole) (PVK) doped with 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) and tris(8-hydroxy-quinoline) aluminium (Alq(3)). For the double-layered device in which PVK was doped with 0.1 wt% DCJTB, the EL onset of PVK lags that of DCJTB and Alq(3), while the EL onset of DCJTB and Alq(3) is simultaneous. However, the EL emission of the double-layered device of PVK/Alq(3) originates only from Alq(3). The results show that DCJTB dopants can not only help to tunnel electrons from Alq(3) zone to PVK but can also assist electrons transfer in PVK under high electric field by hopping between DCJTB molecules or from DCJTB to PVK sites at a low doping concentration of 0.1 wt%. When the DCJTB doping concentration is 4.0 wt%, the EL onset of Alq(3) lags that of DCJTB. The difference in the EL onsets of DCJTB, Alq(3) and PVK is attributed to the slow build-up of the internal space charge in the vicinity of the interface between PVK and Alq(3). The electron potential difference of the interface between Alq(3) and PVK doped by DCJTB can be adjusted by changing the DCJTB doping concentration in double-layer devices.