230 resultados para AR coatings
Resumo:
Laser conditioning effects of the dielectric mirror coatings with different designs were investigated. Simple quarter-wave ZrO2:Y2O3/SiO2 mirrors and half-wave SiO2 over-coated ZrO2:Y2O3/SiO2 mirror coatings were fabricated by E-beam evaporation (EBE). The absorbance of the samples before and after laser conditioning was measured by surface thermal lensing (STL) technology and the defects density was detected under Nomarski microscope. The enhancement of the laser damage resistance was found after laser conditioning. The dependence of the laser conditioning on the coating design was also observed and the over-coated sample obtained greatest enhancement, whereas the absorbance of the samples did not change obviously. During the sub-threshold fluence raster scanning, the minor damage about defects size was found and the assumption of pre-damage mechanism, based on the functional damage concept, was put forward. The improvement of the laser induced damage threshold (LIDT) was attributed to the benign damage of the defects and the dependence on the coating design owed to the damage growth behavior of different coating designs. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A number of 355-nm Al2O3/MgF2 high-reflectance (HR) coatings were prepared by electron-beam evaporation. The influences of the number of coating layers and deposition temperature on the 355-nm Al2O3/MgF2 HR coatings were investigated. The stress was measured by viewing the substrate deformation before and after coating deposition using an optical interferometer. The laser-induced damage threshold (LIDT) of the samples was measured by a 355-nm Nd:YAG laser with a pulse width of 8 ns. Transmittance and reflectance of the samples were measured by a Lambda 900 spectrometer. It was found that absorptance was the main reason to result in a low LIDT of 355-nm Al2O3/MgF2 HR coatings. The stress in Al2O3/MgF2 HR coatings played an unimportant role in the LIDT, although MgF2 is known to have high tensile stress.
Resumo:
With the present work we tried to study the effective methods to improve the laser-induced damage threshold (LIDT) and reflectance of HR coatings at 355 nm. The work presented in this paper wits part of an ongoing study about vacuum annealing. It was dedicated to study the effects Of Vacuum annealing with different temperature gradients on the structure, optical properties and laser-induced damage threshold (LIDT) of 355nm Al2O3/MgF2HR coatings. A number of samples were prepared by electron beam evaporation using the same deposition process with an optimal deposition temperature of 280 degrees C. After deposition, samples were annealed in the coating chamber for 3 h with different temperature gradients. Morphologies of the samples were observed by Leica-DMRXE. Microscope, Structure of the samples had been characterized by X-ray diffraction (XRD). Transmittance and reflectance of the samples were measured by Lambda 900 Spectrometer, The LIDT of the samples was measured by a 355 nm Nd:YAG laser with a pulse width of 8 ns. It was found that the temperature gradient of vacuum annealing had significant effects on the morphology, structure, absorption, and LIDT of the samples, (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A series of HR coatings, with and without overcoat, were prepared by electron beam evaporation using the same deposition process. The laser-induced damage threshold (LIDT) was measured by a 355 nm Nd:YAG laser with a pulse width of 8 ns. Damage morphologies of samples were observed by Leica-DMRXE Microscope. The stress was measured by viewing the substrate deformation before and after coatings deposition using an optical interferometer. Reflectance of the samples was measured by Lambda 900 Spectrometer. The theoretical results of electric field distributions of the samples were calculate by thin film design software (TFCalc). It was found that SiO2 overcoat had improved the LIDT greatly, while MgF2 overcoat had little effect on the LIDT because of its high stress in the HR coatings. The damage morphologies were different among HR coatings with and without overcoats. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N-1 sublayers of uniform thickness) and subsurface layer (separated into N-2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried Out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and Substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A model for refractive index of stratified dielectric substrate was presented according to inhomogeneous coatings theories. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. The former two layers were equivalent to inhomogeneous coatings. Theoretical deduction was executed by employing the characteristic matrix method of optical coatings, and one mathematical calculation example was presented. The results indicate that reflectance, reflective phase shift and phase difference of polarized light deviate from ideal conditions. It shows that substrate microdefects can induce volume scattering and change propagation characteristic of light both in coatings and substrate. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
The single- and multi-shot damage behaviors of HfO2/SiO2 high-reflecting (HR) coatings under Nd:YAG laser exposure were investigated. Fundamental aspects of multi-shot laser damage, such as the instability due to pulse-to-pulse accumulation of absorption defect and structural defect effect, and the mechanism of laser induced defect generation, are considered. It was found in multi-shot damage, the main factors influencing laser-induced damage threshold (LIDT) are accumulation of irreversible changes of structural defects and thermal stress that induced by thermal density fluctuations.
Resumo:
We investigate the laser damage behaviour of an electron-beam-deposited TiO2 monolayer at different process parameters. The optical properties, chemical composition, surface defects, absorption and laser-induced damage threshold (LIDT) of Elms are measured. It is found that TiO2 Elms with the minimum absorption and the highest LIDT can be fabricated using a TiO2 starting material after annealing. LIDT is mainly related to absorption and is influenced by the non-stoichiometric defects for TiO2 films. Surface defects show no evident effects on LIDT in this experiment.
Resumo:
Two kinds of HfO2/SiO2 800 nm high-reflective (HR) coatings, with and without SiO2 protective layer were deposited by electron beam evaporation. Laser-induced damage thresholds (LIDT) were measured for all samples with femtosecond laser pulses. The surface morphologies and the depth information of all samples were observed by Leica optical microscopy and WYKO surface profiler, respectively. It is found that SiO2 protective layer had no positive effect on improving the LIDT of HR coating. A simple model including the conduction band electron production via multiphoton ionization and impact ionization is used to explain this phenomenon. Theoretical calculations show that the damage occurs first in the SiO2 protective layer for HfO2/SiO2 HR coating with SiO2 protective layer. The relation of LIDT for two kinds of HfO2/SiO2 HR coatings in calculation agrees with the experiment result. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thermal boat evaporation was employed to prepare MgF2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 degrees C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 degrees C that the refractive index was higher than those deposited at 244 and 277 degrees C. The tensile residual stresses were exhibited in all MgF2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 degrees C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Laser-induced damages to TiO2 single layers and TiO2/SiO2 high reflectors at laser wavelength of 1064 nm, 800 run, 532 urn, and pulse width of 12 ns, 220 ps, 50 fs, 8 ns are investigated. All films are prepared by electron beam evaporation. The relations among microstructure, chemical composition, optical properties and laser-induced damage threshold (LIDT), have been researched. The dependence of damage mechanism on laser wavelength and pulse width is discussed. It is found that from 1064 nm to 532 nm, LIDT is mainly absorption related, which is determined by film's extinction coefficient and stoichiometric defects. The rapid decrease of LIDT at 800 nm is due to the pulse width factor. TiO2 coatings are mainly thermally by damaged at long pulse (tau >= 220 ps). The damage shows ablation feature at 50 fs. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Temperature fields of 355 nm high-reflectance (HR) coatings were investigated based on the interface absorption model. It was found that the highest temperature in the HR coatings increased with an increase in the extinction coefficient of the interface A, B, C, Al2O3 and MgF2. The highest temperature of HR coatings that can be reached increased quickly with the increase in the extinction coefficient of interface A in particular. The temperature rises of 355 nm HR coatings at different layers and different deposition temperatures were investigated based on experiments also. The damage mechanism of 355 nm HR coatings was confirmed with temperature fields and the interface absorption model.
Resumo:
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.