730 resultados para GAAS(100)
Resumo:
A determination of {1 1 1}A and {1 1 1}B in cubic GaN(c-GaN) was investigated by X-ray diffraction technique in detail. The c-GaN films are grown on GaAs(0 0 1) substrates by metalorganic chemical vapor deposition(MOCVD). The difference of integrated intensities measured by omega scan for the different order diffractions from {1 1 1}A and {1 1 1}B planes in the four-circle diffractometer gives convincing evidence as to which is the {1 1 1}A and which is the {1 1 1}B planes. The lesser deviation between the ratios of /F-h k l/(2)//F-(h) over bar (k) over bar (l) over bar/(2) and the calculated values after dispersion correction for atomic scattering factor shows that the content of parasitic hexagonal GaN(h-GaN) grown on c-GaN{1 1 1}A planes is higher than that on {1 1 1}B planes. The reciprocal space mappings provide additional proof that the h-GaN inclusions in c-GaN films appear as lamellar structure. (C) 2001 Published by Elsevier Science B.V.
Resumo:
InAlAs/InGaAs metamorphic high-electron-mobility transistor structures with different spacer layers on GaAs substrates are characterized by Raman measurements. The influence of In0.52Al0.48As spacer thickness on longitudinal optic phonon-plasmon coupling is investigated. It is found that the intensity of GaAs-like longitudinal optic phonon, which couples with collective intersubband transitions of two-dimensional electron gas, is strongly affected by the different subband energy spacings, subband electron concentrations, and wave function distributions, which are determined by different spacer thicknesses. (C) 2001 American Institute of Physics.
Resumo:
Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.
Resumo:
We have investigated random telegraph noise in the photoluminescence from InGaAs quantum dots in GaAs. Dots switching among two and three levels have been measured. The experiments show that the switching InGaAs dots behave very similarly to switching InP dots in GaInP. but differently from the more commonly investigated colloidal dots. The switching is attributed to defects, and we show that the switching can be used as a monitor of the defect.
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices.
Resumo:
Two sensitive polarized spectroscopies, reflectance difference spectroscopy and photocurrent difference spectroscopy, are used to study the characteristic of the in-plane optical anisotropy in the symmetric and the asymmetric (001) GaAs/Al(Ga)As superlattices (SLs). The anisotropy spectra of the symmetric and the asymmetric SLs show significant difference: for symmetric ones, the anisotropies of the 1HH-->1E transition (1H1E) and 1L1E are dominant, and they are always approximately equal and opposite; while for asymmetric ones, the anisotropy of 1H1E is much less than that of 1L1E and 2H1E, and the anisotropy of 3H2E is very strong. The calculated anisotropy spectra within the envelope function model agree with the experimental results, and a perturbation approach is used to understand the role of the electric field and the interface potential in the anisotropy. (C) 2001 American Institute of Physics.
Resumo:
Being an established qualitative method for investigating presence of additional phases in single crystal materials, X-ray diffraction has been used widely to characterize their structural qualities and to improve the preparation techniques. Here quantitative X-ray diffraction analysis is described which takes into account diffraction geometry and multiplicity factors. Using double-crystal X-ray four-circle diffractometer, pole figures of cubic (002), {111} and hexagonal {10 (1) over bar0} and reciprocal space mapping were measured to investigate the structural characters of mixed phases and to obtain their diffraction geometry and multiplicity factors. The fractions of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {10 (1) over bar0} and hexagonal {10 (1) over bar1}. Without multiplicity factors, the calculated results are portions of mixed phases in only one {111} plane of cubic GaN. Diffraction geometry factor can eliminate the effects of omega and X angles on the irradiated surface areas for different scattered planes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Metamorphic high electron mobility transistor (M-HEMT) structures have been grown on GaAs substrates by molecular beam epitaxy (MBE). Linearly graded and the step-graded InGaAs and InAlAs buffet layers hal e been compared, and TEM, PL and low-temperature Hall have been used to analyze the properties of the buffer layers and the M-HEMT structure. For a single-delta-doped M-HEMT structure with an In0.53Ga0.47As channel layer and a 0.8 mum step-graded InAlAs buffer layer, room-temperature mobility of 9000 cm(2)/V s and a sheet electron density as high as 3.6 x 10(12)/cm(2) are obtained. These results are nearly equivalent to those obtained for the same structure grown on an InP substrate. A basic M-HEMT device with 1 mum gate was fabricated, and g(m) is larger than 400 mS/mm. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN/GaAs(0 0 1) epilayers and hexagonal inclusions are characterized by X-ray diffraction (XRD), Photoluminescence (PL), Raman spectroscopy, and transmission electron microscopy (TEM). The X-ray {0 0 0 2} and (1 0 (1) over bar 0) pole figures show that the orientation relationships between cubic GaN and hexagonal inclusions are (1 1 1)//(0 0 0 1), <1 1 2 >//<1 0 (1) over bar 0 >. The distribution of hexagonal inclusions mainly results from the interfacial bonding disorder in the grain boundaries parallel to hexagonal <0 0 0 1 > directions and the lattice mismatch in <0 0 0 1 > directions on {1 0 (1) over bar 0} planes. In order to reduce the energy increase in cubic epilayers, hexagonal lamellas with smaller sizes in <0 0 0 1 > directions often nucleate inside the buffer layer or near the interface between the buffer layer and the epitaxial layer, and penetrate through the whole epitaxial layer with this orientation relationship. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated transitions above and below band edge of GaNAs/GaAs and InGaNAs/GaAs single quantum wells (QWs) by photoluminescence (PL) as well as by absorption spectra via photovoltaic effects. The interband PL peak is observed to be dominant under high excitation intensity and at low temperature. The broad luminescence band below band edge due to the nitrogen-related potential fluctuations can be effectively suppressed by increasing indium incorporation into InGaNAs. In contrast to InGaNAs/GaAs QWs, the measured interband transition energy of GaNAs/GaAs QWs can be well fitted to the theoretical calculations if a type-II band lineup is assumed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.
Resumo:
The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
There are two key points to get high transconductance of pseudomorphic HEMTS (pHEMTs) devices. From the point view of materials, the transfer efficiency of the electrons from the delta -doped AlGaAs layer to the InGaAs channel must be high. From the point view of device processing, the gate recess depth must be carefully controlled. In the present work, AlGaAs/InGaAs/GaAs pHEMTs structures were grown by molecular beam epitaxy. Layer structures of the pHEMTs were optimized to get high transfer efficiency of the electrons. Gate recess depth was also optimized. A 0.2 mum pHEMT was fabricated on the materials with optimized layer structure using the optimized gate recess depth. The maximum transconductance of 650 mS/mm and the cut-off frequency of 81 GHz were achieved. (C) 2001 published by Elsevier Science Ltd.