583 resultados para self-organized quantum dots


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved photoluminescence (PL) of sub-monolayer (SML) InGaAs/GaAs quantum-dot-quantum-well heterostructures was measured at 5 K for the first time. The radiative lifetime of SML quantum dots (QDs) increases from 500 ps to 800 ps with the increase of the size of QDs, which is related to the small confinement energy of the excitons inside SML QDs and the exciton transfer from smaller QDs to larger ones through tunneling. The rise time of quantum-dot state PL signal strongly depends on the excitation power density. At low excitation power density, the rise time is about 35 ps, the mechanism of carrier capture is dominated by the emission of longitudinal-optical phonons. At high excitation power density, the rise time decreases as the excitation density increases, and Auger process plays an important role in the carrier capture. These results are very useful for understanding the working properties of sub-monolayer quantum-dot devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots (QDs) are grown on the cleaved edge of an InxGa1-xAs/GaAs supperlattice experimentally and a good linear alignment of these QDs on the surface of an InxGa1-xAs layer has been realized. The modulation effects of periodic strain on the substrate are investigated theoretically using a kinetic Monte Carlo method. Our results show that a good alignment of QDs can be achieved when the strain energy reaches 2% of the atomic binding energy. The simulation results are in excellent qualitative agreement with our experiments. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A theoretical study on 1.3 mu m GaAs-based quantum dot vertical-cavity surface-emitting lasers (VCSELs) was made. Investigation of the influence of VCSELs on the optical confinement factors and the optical loss and the calculation of the material gain of the assembled InGaAs/GaAs quantum dots. Analysis of the threshold characteristic was made and the multi-wavelength cavity and multilayer quantum-dot stack structure is found to be more suitable for quantum dot VCSELs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have fabricated a resonant-cavity-enhanced photodiode (RCE-PD) with InGaAs quantum dots (QDs) as an active medium. This sort of QD-embedded RCE-PD is capable of a peak external quantum efficiency of 32% and responsivity of 0.27A/W at 1.058 mu m with a full width at half maximum (FWHM) of 5 nm. Angle-resolved photocurrent response eventually proves that with the detection angle changing from 0 degrees to 60 degrees, the peak-current wavelength shifts towards the short wavelength side by 37 nm, while the quantum efficiency remains larger than 15%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We, report on the influence of boron on the formation of Ge quantum dots. The investigated structure consists of a Ge wetting layer, on which a sub-monolayer boron is deposited and subsequently a Ge top layer. For sufficiently thin Ge top layers, the strain field induced by boron on Ge wetting layer destabilizes the Ge top layer and causes the formation of small Ge quantum dots. However, for thicker Ge top layers, boron on the Ge wetting layer diffuses into Ge layers, compensates partly the strain and delays the evolution of Ge quantum dots. By this method, small Ge quantum dots with high density as well as size uniformity can be formed by optimizing the growth condition. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under selective photo-excitation, the capacitance response of internal tunnelling coupling in quantum-dots-imbedded heterostructures is studied to clarify the electronic states and the number densities of electrons filling in the quantum dots (QDs). The random nature for both optical transitions and the filling in a QD assembly makes highly resolved capacitance peaks appear in the C-V characteristic after turning off the photo-excitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double-state lasing phenomena are easily observed in self-assembled quantum dot (QD) lasers. The effect of inter-level relaxation rate and cavity length on the double-state lasing performance of QD lasers is investigated on the basis of a rate equation model. Calculated results show that, for a certain cavity length, the ground state (GS) lasing threshold current increases almost linearly with the inter-level relaxation lifetime. However, as the relaxation rate becomes slower, the ratio of excited state (ES) lasing threshold current over the GS one decreases, showing an evident exponential behavior. A relatively feasible method to estimate the inter-level relaxation lifetime, which is difficult to measure directly, is provided. In addition, fast inter-level relaxation is favorable for the GS single-mode lasing, and leads to lower wetting layer (WL) carrier occupation probability and higher QD GS capture efficiency and external differential quantum efficiency. Besides, the double-state lasing effect strongly depends on the cavity length. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on our recent work on quantum transport [X. Q. Li , Phys. Rev. B 71, 205304 (2005)], we show how an efficient calculation can be performed for the current noise spectrum. Compared to the classical rate equation or the quantum trajectory method, the proposed approach is capable of tackling both the many-body Coulomb interaction and quantum coherence on an equal footing. The practical applications are illustrated by transport through quantum dots. We find that this alternative approach is in a certain sense simpler and more straightforward than the well-known Landauer-Buttiker scattering matrix theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the intersubband absorption for spatially ordered and non-ordered quantum dots (QDs). It is found that the intersubband absorption of spatially ordered QDs is much stronger than that of non-ordered QDs. The enhanced absorption is attributed to the improved size uniformity concurrent with the spatial ordering for the growth condition employed. For the FTIR measurement under normal incidence geometry, using a undoped sample as reference can remove the interference effect due to multiple reflections. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some important parameters, such as gain, 3 dB bandwidth and threshold current of 1.3 mu m quantum dot vertical-cavity surface-emitting laser (QD VCSEL) are theoretically investigated. Some methods are developed to improve the VCSEL's modulation response. Significant improvement are prediced for p-type modulation doping. In connection with the threshold characteristic, we found that a structure with short cavity, multilayer quantum dots stack, p-type modulation doping and double intracavity contact on an un-doped DBR is much better suited to high speed quantum dot VCSELs. The parasitic effects of the VCSEL are,analyzed and the influence of packaging of the VCSEL on its modulation responds is analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For InAs/GaAs quantum dot system, the evolution of the wetting layer (WL) with the InAs deposition thickness has been studied by reflectance difference spectroscopy (RDS). Two transitions related to the heavy-and light-hole in the WL have been distinguished in RD spectra. Taking into account the strain and segregation effects, a model has been presented to deduce the InAs amount in the WL and the segregation coefficient of the indium atoms from the transition energies of heavy-and light-holes. The variation of the InAs amount in the WL and the segregation coefficient are found to rely closely on the growth modes. In addition, the huge dots also exhibits a strong effect on the evolution of the WL. The observed linear dependence of In segregation coefficient upon the InAs amount in the WL demonstrates that the segregation is enhanced by the strain in the WL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periodical alignment of the InAs dots along the < 100 > and < 110 > directions was observed on an elastically relaxed InGaAs buffer layer grown at 500 and 450 degrees C, respectively, on the vicinal GaAs(001) substrate. Due to alignment along these directions, the InAs dots were arranged into a quasi-two-dimensional hexagonal lattice. Such a periodical arrangement of InAs dots may be explained in terms of modulation in strain as well as composition along [110] as observed by using cross-sectional transmission electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of shape and spatial correlation of InAs-InAlAs-InP(001) nanostructure superlattices has been realized by changing the As overpressure during the molecular-beam epitaxy (MBE) growth of InAs layers. InAs quantum wires (QWRs) are obtained under higher As overpressure (1x10(-5) Torr), while elongated InAs quantum dots (QDs) are formed under lower As overpressure (5x10(-6) or 2.5x10(-6) Torr). Correspondingly, spatial correlation changes from vertical anti-correlation in QWR superlattices to vertical correlation in QD superlattices, which is well explained by the different alloy phase separation in InAlAs spacer layers triggered by the InAs nanostrcutures. It was observed that the alloy phase separation in QD superlattices could extend a long distance along the growth direction, indicating the vertical correlation of QD superlattices can be kept in a wide range of spacer layer thickness.