728 resultados para GaN Buffer
Resumo:
The influence of electric fields on surface migration of Gallium (Ga) and Nitrogen (N) adatoms is studied during GaN growth by molecular beam epitaxy (MBE). When a direct current (DC) is used to heat the sample, long distance migration of Ga adatoms and diffusion asymmetry of N adatoms at steps are observed. On the other hand, if an alternating current (AC) is used, no such preferential adatom migration is found. This effect is attributed to the effective positive charges of surface adatoms. representing an effect of electro-migration. The implications of such current-induced surface migration to GaN epitaxy are subsequently investigated. It is seen to firstly change the distribution of Ga adatoms on a growing surface, and thus make the growth to be Ga-limited at one side of the sample but N-limited at the other side. This leads to different optical qualities of the film and different morphologies of the surface. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
High-quality GaN epilayers were consistently obtained using a home-made gas-sourer MBE system on sapphire substrates. Room-temperature electron mobility of the grown GaN film is 300 cm(2)/V s with a background electron concentration as low as 2 x 10(17) cm(-3) The full-width at half-maximum of the GaN (0 0 0 2) double-crystal X-ray rocking curve is 6 arcmin. At low temperature (3.5 K), the FWHM of the: near-band-edge photoluminescence emission line is 10 meV. Furthermore, using piezoelectric effect alone with the high-quality films, two-dimensional electron gas was formed in a GaN/AlN/GaN/sapphire structure. Its room-temperature and low-temperature (77 K) electron mobility is 680 cm(2)/V s and 1700 cm(2)/V s, and the corresponding sheet electron density is 3.2 x 10(13) and 2.6 x 10(13) cm(-2), respectively. (C) 2001 Published by Elsevier Science.
Resumo:
The distribution of mixed phases and its dependence on the polarity of cubic GaN epilayers are investigated by conventional X-ray pole figure and grazing incident diffraction (GID) pole figure. The hexagonal inclusions and cubic twins can be classified into two portions: one is formed with strict crystalline orientations, the other with crystalline misorientations. The former can be measured by conventional pole figures which reveal that the density of lamellate hexagonal grains and cubic twins located on (1 1 1)(Ga) and ((1) over bar (1) over bar1)(Ga) along [1 (1) over bar 0] direction are higher than those on ((1) over bar 1 1), and (1 (1) over bar 1)(N) along [110] direction. However, the low signals from tiny mixed phases with crystalline misorientations, detected by GID pole figures, distribute in a larger phi region near the [1 1 0] and [(1) over bar (1) over bar 0] directions with much weaker intensity, and in a smaller phi region near the [1 (1) over bar 0] and [(1) over bar 1 0] directions with slightly stronger intensity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The epitaxial lateral overgrowth (ELO) of cubic GaN by metalorganic chemical vapor deposition has been performed on SiO2-patterned GaN laver. The mechanism of lateral overgrowth is studied It was found that the morphology of ELO GaN stripes strongly depended on the direction of stripe window openings, which was discussed based on the different growth rates of (1 1 1)A and (1 1 1)B. Under the optimized growth condition, single-phase cubic GaN was deposited successfully. The peak position of near-band emission in ELO GaN has a redshift of 13 meV compared with the conventionally grown sample, which may be due to the partial release of stress during the ELO process. (C) 2001 Published by Elsevier Science B.V.
Resumo:
On the basis of integrated intensity of rocking curves, the multiplicity factor and the diffraction geometry factor for single crystal X-ray diffraction (XRD) analysis were proposed and a general formula for calculating the content of mixed phases was obtained. With a multifunction four-circle X-ray double-crystal diffractometer, pole figures of cubic (002), {111} and hexagonal {1010} and reciprocal space mapping were measured to investigate the distributive character of mixed phases and to obtain their multiplicity factors and diffraction geometry factors. The contents of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {1010} and {1011}.
Resumo:
Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004) components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyser crystal is placed in front of the detector. Moreover, the peak broadening was analysed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113) components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 +/- 0.001nm.
Resumo:
Undoped GaN epilayer on c-face (0 0 0 1) sapphire substrate has been grown by metalorganic vapor-phase epitaxy (MOVPE) in a horizontal-type low-pressure two-channel reactor. Photoluminescence (PL) as a function of temperature and excitation intensity have been systematically studied, and the competition between near band gap ultraviolet (UV) and defect-related yellow luminescence (YL) has been extensively investigated, It is revealed that the ratio of the UV-to-YL peak intensities depends strongly on the excitation intensity and the measurement temperature. The obtained results have been analyzed in comparison with the theoretical predications based on a bimolecular model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We measured the depth profiling of photoluminescence (PL) in cubic GaN films. The depth-resolved PL of normal grown GaN layers showed that the near-band-edge luminescence intensities of both cubic and wurtzite domains remained constant only until an etching depth of up to 2.7 mu m, but their ratio remained unchanged at all etching depths. Moreover, when a thin In0.1Ga0.9N layer was sandwiched between two GaN layers, the content of the wurtzite domains increased, and its distribution showed a dependence on thickness. As the reactive ion etching depth increased, the PL intensity ratio of cubic GaN to wurtzite domains increased. Based on the distribution, the strain relaxation, instead of the instability of cubic GaN at high temperature, was attributed to the origin of wurtzite domains. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We observe "ghost" islands formed on terraces during homoepitaxial nucleation of GaN. We attribute the ghost islands to intermediate nucleation states, which can be driven into "normal" islands by scanning tunneling microscopy. The formation of ghost islands is related to excess Ga atoms on the surface. The excess Ga also affect island number density: by increasing Ga coverage, the island density first decreases, reaching a minimum at about 1 monolayer (ML) Ga and then increases rapidly for coverages above 1 ML. This nonmonotonic behavior points to a surfactant effect of the Ga atoms.
Resumo:
Interdigital metal-semiconductor-metal (MSM) ultraviolet photoconductive detectors have been fabricated on undoped GaN films grown by molecular beam epitaxy (MBE), Response dependence on wavelength, applied current, excitation powers and chopper frequency has been extensively investigated. It is shown that the photodetector's spectral response remained nearly constant for wavelengths above the band gap and dropped sharply by almost three orders of magnitude for wavelengths longer than the band gap. It increases linearly with the applied constant current, but very nonlinearly with illuminating power. The photodetectors showed high photoconductor gains resulting from trapping of minority carriers (holes) at acceptor impurities or defects. The results demonstrated the high quality of the GaN crystal used to fabricate these devices. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strains in cubic GaN films grown on GaAs (001) were measured by a triple-axis x-ray diffraction method. Residual strains in the as-grown epitaxial films were in compression, contrary to the predicted tensile strains caused by large lattice mismatch between epilayers and GaAs substrates (20%). It was also found that the relief of strains in the GaN films has a complicated dependence on the growth conditions. We interpreted this as the interaction between the lattice mismatch and thermal mismatch stresses. The fully relaxed lattice constants of cubic GaN are determined to be 4.5038 +/- 0.0009 Angstrom, which is in excellent agreement with the theoretical prediction of 4.503 Angstrom. (C) 2000 American Institute of Physics. [S0021-8979(00)07918-4].
Resumo:
Photoluminescence measurements have been performed on cubic GaN films with carrier concentration as low as 3 x 10(13) cm(-3). From the temperature and excitation intensity dependence, the emission lines at 3.268, 3.150 and 3.081 eV were assigned to the excitonic, donor-acceptor pair, and free-to-acceptor transitions, respectively Additionally, we observed two additional emission lines at 2.926 and 2.821 eV, and suggested that they belong to donor-acceptor pair transitions. Furthermore, from the temperature dependence of integral intensities, we confirmed that three donor-acceptor pair transitions (3.150, 2.926, and 2.821 eV) are from a common shallow donor to three different accepters. The excitonic emission at 3.216 eV has a full-width-at-half-maximum value of 41 meV at room temperature, which indicates a good optical quality of our sample.
Resumo:
Deep levels in undoped GaN materials grown by modified molecular beam epitaxy (MBE) are investigated by photoluminescence (PL) and optical quenching of photoconductivity measurements. A broad band which extends from 2.1 to 3.0 eV with a maximum at about 2.7 eV is observed, and four prominent quenching bands were found located at 2.18, 2.40, 2.71, and 2.78 eV above the valence band, respectively. These levels are attributed to four holes trap levels existence in the material. The defects cannot be firmly identified at present. (C) 2000 Elsevier Science B.V, All rights reserved.
Resumo:
Using Raman spectroscopy we have analysed the strain status of GaN films grown on sapphire substrates by NH3 source molecular beam epitaxy (MBE). In addition to the expected compressive biaxial strain, in some cases GaN films grown on c-face sapphire substrates suffer from serious tensile biaxial strain. This anomalous behaviour has been well interpreted in terms of interstitial hydrogen-dependent lattice dilation. The hydrogen concentration in the films is measured by nuclear reaction analysis (NRA). With increasing hydrogen incorporation, the residual compressive biaxial strain is first further relaxed, and then turns into tensile strain when the hydrogen contaminant exceeds a critical concentration. The hydrogen incorporation during the growth process is found to be growth-rate dependent, and is supposed to be strain driven. We believe that the strain-induced interstitial incorporation is another way for strain relaxation during heteroepitaxy, besides the two currently well known mechanisms: formation of dislocations and growth front roughening.
Resumo:
The hole effective-mass Hamiltonian for the semiconductors of wurtzite structure is established, and the effective-mass parameters of GaN and AlxGa1-xN are given. Besides the asymmetry in the z and x, y directions, the linear term of the momentum operator in the Hamiltonian is essential in determining the valence band structure, which is different from that of the zinc-blende structure. The binding energies of acceptor states are calculated by solving strictly the effective-mass equations. The binding energies of donor and acceptor for wurtzite GaN are 20 and 131, 97 meV, respectively, which are inconsistent with the recent experimental results. It is proposed that there are two kinds of acceptors in wurtzite GaN. One kind is the general acceptor such as C, substituting N, which satisfies the effective-mass theory, and the other includes Mg, Zn, Cd etc., the binding energy of which deviates from that given by the effective-mass theory. Experimentally, wurtzite GaN was grown by the MBE method, and the PL spectra were measured. Three main peaks are assigned to the DA transitions from the two kinds of acceptor. Some of the transitions were identified as coming from the cubic phase of GaN, which appears randomly within the predominantly hexagonal material. The binding energy of acceptor in ALN is about 239, 158 meV, that in AlxGa1-xN alloys (x approximate to 0.2) is 147, 111 meV, close to that in GaN. (C) 2000 Published by Elsevier Science S.A. All rights reserved.